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SIMULATION OF THE FOKKER-PLANCK EQUATION BY RANDOM WALKS
OF TEST PARTICLES IN VELOCITY SPACE WITH APPLICATION
TO MAGNETIC MIRROR SYSTEMS
by Gerald W, Englert

Lewis Research Center

SUMMARY

The structure of an analytical expression obtained from a random-walk process was
compared with that of the Fokker-Planck equation. The step sizes and probabilities of
taking steps in various directions were related to the coefficients of the Fokker-Planck
equation. Spherical coordinates with azimuthal symmetry about the polar axis were
used.

The technique was applied to a magnetic-mirror system for confining charged par-
ticles. The cases selected have approximate analytical solution via the Fokker-Planck
equation. Velocity distributions inside and end losses from this system were determined
by the random-walk procedure and compared with results of the analytical solutions.

The effect of reducing the maximum impact parameter cutoff distance well below the
Debye length was studied. This reduction increased step sizes and decreased collision
frequency in such a manner that the probability of a test particle walking to specified
locations in velocity space remained approximately constant. A sampling of random
numbers from the lower impact-parameter range greatly reduced computing time and
yet permitted reliable distributions within 10- to 20-percent accuracy.

The random-walk results were, in turn, permitted an appraisal of some simplifying
assumptions made in the analytical solution of the Fokker-Planck equation. An iteration
procedure was used to find a self-consistent solution of the distribution of test particles
walking through an ensemble of field particles, on which the Fokker-Planck coefficients
were based. Analytical solutions assume that the distribution of test particles and loss
rates are insensitive to assumed field-particle distributions. For the cases studied this
was found to be a good assumption. Two steps in the iteration process made the
random-walk solutions self-consistent within the scattering of the data for a sampling
size of 500 test particles. The popular assumption of separability of the distribution
function was also verified.

The random-walk method should apply with little additional difficulty to a number of
problems that cannot be solved analytically.



INTRODUCTION

The Fokker-Planck equation, in general, describes the time development of a
Markov process. Such a process is characteristic of the nature of classical collisions
where each event depends on the present conditions and is independent of the past
(ref. 1, p. 157, and ref. 2, p. 369). Written in velocity space, this equation provides
a popular approximation to the collisional terms in the Boltzmann equation (refs. 3 to 5).
Included in this approximation are first and second moments of velocity increments de-
scribing two-body encounters (p. 75 of ref. 6). These moments enter as coefficients
of the Fokker-Planck equation and permit it to describe changes in the velocity distri-

" bution function resulting from influence of dynamic friction and dispersion (refs.

7 and 8). In general, the velocity distribution function is used to weight the moments
of velocity increments, making the Fokker-Planck equation nonlinear and very difficult
to solve for many problems of interest.

Another approach to collision problems is through the study of random walks of
test particles. This approach replaces the mathematical complexity with a relatively
simple but repetitious process, which is greatly facilitated by high-speed computers.
Usually the walks of a large sample of test particles through an ensemble of field par-
ticles must be studied to determine how they distribute in velocity space. For a self-
consistent solution, the resulting test-particle distribution should coincide with the
field-particle distribution, requiring an iteration process.

A random walk will be defined herein as a process in which step sizes and proba-
bilities of taking various steps are average values (depending on field-particle distribu-
tions and test-particle location in velocity space for the case at hand). In contrast to
this procedure is the more popular Monte Carlo method. This technique makes random
selections from distributions of pertinent variables (such as impact parameter and rela-
tive velocity) at each collision and performs an interaction calculation at each step to
determine the resulting test-particle location (refs. 9 and 10). Such a detailed calcula-
tion at each step is excellent for physical and mathematical clarity, but would involve
an excessive amount of computer time for cases involving a very large number of en-
counters. On the other hand some physical clarity can be easily lost in the representa-
tion by random walks, especially in determining the probability of taking steps in vari-
ous directions. The ability to relate step sizes and probabilities to the well explored
coefficients of the Fokker-Planck equation would thus be very useful.

The random-walk and the Fokker-Planck concepts depend primarily on the same
combinatory laws of probability, however, the random walk as depicted herein is re-
stricted to steps on a grid. A detailed generation of the Fokker-Planck equation from a
random-walk procedure is available in the literature only for the one-dimensional prob-
lem with constant coefficients. Reference 2 (ch. 14) shows that for this case the proper
step size of a random walk is dependent on the second moment and that the probabilities
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of taking steps in positive and negative directions depend on both first and second mo-
ments. This derivation is extended herein to problems involving three dimensions and
variable coefficients. In this more general case the step sizes and probabilities are
again determined in terms of Fokker-Planck coefficients. The Fokker-Planck coeffi-
cients are evaluated for the binary Coulomb encounters used in plasma physics.

A main difficulty in obtaining final results is due to the long range nature of Coulomb
encounters, which makes the step sizes of the walks extremely small. For example, at
typical experimental or laboratory conditions, a particle may average 10'7 encounters
(steps) before it reaches a 90° deflection from its initial direction. At thermonuclear
conditions this number easily reaches 1016 steps. Tracing such a large number of
steps for a representative number of test particles would require an excessive amount
of time even for today's fastest computers. A selective sampling technique of some
nature must be therefore employed to the random-walk procedure.

The coefficients of the Fokker-Planck equation are insensitive to the cutoff assumed
for the collisional impact parameter (refs. 11 and 12). As the maximum impact param-
eter is reduced, the average step size increases, but the number of encounters (steps)
per unit time decreases. With a low impact-parameter cutoff distance a test particle
would take a relatively small number of large steps. On the average, however, it would
reach a specified boundary in velocity space in about the same time as in a walk based
on a higher impact-parameter cutoff and requiring a large number of small steps. The
computing time, however, varies inversely as about the square of the step size and is
thus much less for walks based on lower impact-parameter cutoff distances.

To study results of this sampling technique, it was applied to the end-loss problem
of magnetic-mirror systems. The scattering of charged particles into a loss cone has
received considerable attention over a period of years. However, because of the com-
plexity of the Fokker-Planck equation, the rate of such loss has been determined ana-
lytically for only the simplest of cases (refs. 5 and 3). Numerical solutions (ref. 13)
are available for only a restrictive set of initial and boundary conditions. Desired also
are particle distributions inside the mirror system for use in stability studies (ref. 14).

In summarizing, the attempt herein is to exchange a difficult analytical problem
with a fairly straightforward computing procedure. Computing time is made reasonable
by a sampling technique. Considerable physical detail can be incorporated into such a
procedure with little increase of mathematical complexity.

ANALYSIS

The general form of a random-walk equation will be derived for walking on a co-
ordinate grid in N dimensions. (One-dimensional walks with constant step sizes and
probabilities are treated in refs. 2 and 8. Ref. 2 writes the results in the form of a



Fokker-Planck differential equation. Ref. 8 uses the random walk to derive solutions
to some boundary value problems, but does not arrive at a differential equation as an
intermediate step. The Fokker-Planck equation is also derived in ref. 8, but not from

the concept of a random walk on a grid.) It is not necessary for the grid to be orthog-
ornal or have constant spacing. Comparison will then be made with the Fokker-Planck

equation applied to inverse square collisions in velocity space. The results will be
adapted to a study of charged particles in a magnetic-mirror system.

A list of symbols is given in appendix A. The International System of Units (SI)
will be used throughout with the exception of temperature T being reported in keV and
the corresponding Boltzmann constant k in joules per keV.

Development of the Random-Walk Equation

Let £4, &9, - - ., &y be independent coordinates that span the space of interest.

Let p, and q; be the probabilities that the i*P

17" coordinate will increase or decrease
during the course of a step. To identify these conditional probabilities, only their loca-
tion at the start of a step will be labeled in their arguments. For example, compared

with the more conventional nomenclature,

P&y &9, - - -5 EY)
means
Pyl + AEy, &g o o o, EnlEy £9r - - by £y
and
q9(&y, &9, - - -5 Ey)
means
ay(€y - ALy, &gy - - -, ENlED E90 - - 1, £

Let the probability of a step being in the :tith direction be 1/N; that is,

1
pi(gl’ 52, c e e gN) +qi(£1’ 52, . e e, gN) =—I:]' (1)
Let u (&q, &9, - - -, §N) denote the chance of a particle being at location
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Figure 1. - Examples of random walks in two-
dimensional Cartesian coordinates.

(4 £g, - - -» &) at the start of the n'

starts of the n and n + 7 steps.

step and At be the time interval between

Consider the case for 1 = 1, illustrated in figure 1(a). The change in the number of
particles at (51, s o v gN) during At is the probability of reaching (51, g« - oy
.§N) from the closest neighbors minus the chance of a particle leaving (51, Egy « + s gN)
and going to a nearest neighbor. Since a step of finite size is taken each time increment,
there is no chance of a particle standing still. The conservation of particles at (3;1,

Egy v v s £N) can thus be written



uml(gl’ 52: v ey éN) -un(gl’ ‘52, ) EN)‘—‘pl(El - Agly 52; v v ‘EN)un(él "A‘gl’ &2: < e ey ‘EN)

F Qg +AEy Egy - - oy EU(Ey + ALy Egy - . oy B
+PglEys by - Dby, - - -, Eui(Ey, £ - Abg, - - o, £

+a(Eys £yt Aby, o o o, EU(Ey Eg + Akg, o . o, Ep)

+oo e pylEps Egs - - -s £y - AERULEY, B - - o, By - AEY)

wdp(Ey Egr - o o Byt AEQU(Eg, Eg - o o, Eyg + AEY

SDylEy Egr - v os QB Egr - v os By - Aq(Ep Egu o, EU(EL Egu - . o, £
SPglEs Eg o s EUL(ED Egr o - o5 Ep) ~GglEps Egu o - s EQU(EL, Egy - . o, £

- e —pN(él, §2; e ey EN)un(gl’ ‘52; sy gN) -qN(ﬁl, §2’ coe ey gN)un(’El’ 52’ se ey gN)

where use is made of the first and second laws of composition of probability.
Multiplying through by 2N and adding and subtracting u, terms results in

2N[up,1Gps S0 - - s 6 - uplEp e o oy EQ] = NP8 - ALy, by, s Eup(Ey - ALy, gy -, By
S[1-Npyleg - a8y, &g, - -, EQJUE; - AEy, By oL, )
+Nag(€y + Akq, &9, - - oy Eug(Ey + ALy, &y, - o o, By
S[1-Nag(g; + Afy, £y, - - -, SpQlug(ey + ALg, £gy - -, £y
wuplEy - ALy, gy - ooy £ - 2u(Eg, By, - - o, BN Hu(E] ALY, By v -, £y
+ NpolEy, &y - ALy, -+, Epdu (8, &g - ALy, + - -, £y
S[1-Npy(8y, &y - Aty - - -, G ]uglEy, &y - ALy, - oL, £
+ Nag(Ey, &g+ A8y, - o, EpuplEy, &9« - oy £y)
S[1-Nagley, &y + ALy, - - o, EJIu (e, &g+ ALy, - L, £
+up (b, Eg - Abg, « . oy E)) - 20 (Ey, oy o - -y B U (Egs g+ Akg, - - L, £)
o+ Np(Eg, £, oo By - BEQPU EY, By - s £y - ALY
- [1- Npyleg, &9, - - o £~ AEDI(E), £gy - - -y £y - Ay
+Nap(Eqs dgy v v oy B ABRQIU(EY, Egy o o o Byt ALY
S [1-Nag(gy, &g, - - oy b+ BB (g, £gy - - Ly By + ALY
+u(Egs Ego o ooy En AER) - 2u (8, Egy oo o, Ep) H (8, Egy - -, Byt AEY



Using equation (1), combining p; and q; terms of like arguments and i subscripts,
collecting w, terms and finally wrltlng the result in finite difference notation y1e1ds

Au Au 1
ZEAn=2EAt= -2{61[(p1 -qguy ]+ 850 (pg -aglug ]+ . . o+ Oyl (o -qN)un]} + = (Guumﬁﬁzzun+ e Oty

which approaches the limit

N

au_ N\ ) olle -y Ay g, L (ag)?

at 3¢ At 2.2 gz N At
1

i=1

as step size (grid spacing) becomes arbitrarily small.

This is the more conventional approach to a random-walk expression. However,
next consider the case where steps are taken in groups of 7 = N; one along each coor-
dinate direction. (This corresponds to the later physical description of a test particle
in polar coordinates where its magnitude and direction (v, 8, and ¢) change each en-
counter.) This corresponds to steps across the diagonals of N-dimensional lattices
which will herein be called path lines. This is illustrated for the case of N =2 on
figure 1(b).

Repeating this procedure with n = N gives

N
2
u =Z _i[f‘T(Pi - q)u] Ag 102 (Ag;) "

at ok, At 28"512 At

i=1
This same result could be obtained by letting'
Pi(§1, &gy - - oy Epp) T U(E Egy - -, B =0 i=1,2, ..., N
in the derivation regardless of N, and letting 7 = 1; that is, there is a sure chance of

stepping either in the plus or minus direction of each of the components for each time
increment At.

Equation (2) is in the form of the Fokker-Planck equation except that no mixed



‘partial derivatives are present. Generation of these terms does not appear possible
when the walks are restricted to the nearest neighbors on a grid. Their magnitude will
be discussed later.

Note that p; - q; is like a bias in the i
first-order derivatives could be, for example, related to friction. To keep the process
from being degenerate, p; - 9 must approach zero as step size approaches zero (p. 324
of ref. 2). The terms involving second derivatives are similar to diffusion expressions
with (Agi)z/At similar to a diffusion coefficient.

When a stochastic process is being simulated by a random walk on a grid, the step
sizes are often statistical averages. It can be deduced from references 2, 8, 15, or 16
that second moments determine the proper grid spacing. Consider, for example, the
application discussed in the next section. In any small region of velocity space the test
particle taking a random walk encounters many other field or background particles, one
at a time. A field particle can be in any accessible region of velocity space as it starts
its encounter with a test particle (its probable location is defined by appropriate distri-
bution functions). The grid spacings are thus based on statistical averages of encounters
with field particles (fig. 2), these averages nevertheless being dependent on test-

th direction and that the terms involving

particle location,

p; and q; Probabilities of increase and decrease,
respectively, of ith component

(i=1, 2 3

V(Avi)2 ith component of step size
Y vy —

\ ~ V(AV )2

/ 1
1 Ve

A =
2

] L~ (AV})

T

V3

— vl

Figure 2, - Example of step from (v, vy, V3l to ("1 + ‘/(Avl)z,
Vo +V(AV2)2, V3 - V(AV3)2 ’

0



Fokker-Planck Equation

The widely accepted Fokker-Planck equation for studying plasmas in N dimen-
sional Cartesian coordinates is

N

E : 2
<_a_f_) = Y Av)) + 1_9° (av, Av;))
ot/ o v, 2 ov; avj

i,j=1 '

where (2f/0t) ¢ denotes the change of probability density (distribution function of test
particles) with respect to time due to collisions. The coefficients (Avi) and (Avi Av.)
are averages over distributions of field particles and scattering angle (ref. 11). The
angular brackets signify a time average; that is, (Avi) is the average increment per
unit time of the ith component of velocity. The average value per collision, denoted
by a bar, is equal to the time average divided by the collision frequency y; for example,
A—Vi = (AVi> /v.

The Fokker-Planck equation is transformed to spherical coordinates with symmetry
about the polar axis in appendix B. This is essentially the same coordinate system as
used in parts IV and V of reference 11. In reference 11, cos 6 is used in place of the
polar angle 8 used herein. The assumption of aximuthal symmetry is not too restric-
tive for many problems in plasma physics and serves mainly to reduce cumbersome ex-
pressions. The analysis follows in a straightforward manner without it. In this coor-
dinate system

2¢ sin 6((a0)2)

2

2.2 2
(a_f) =.139 (v2f(Av)) -——'1——a—(f sin 8{A8)) PR T 4 f{(av) >+ 1 9
c

v 8 08 ov 8v2 2 sin 8 26

1 o>Psine(avag) 1 8 {v?’f[( a0)%) + sin29<(A<p)2)]}

v2 sin 0 av 28 2v2 av

+

+ 1 _a{f sin 9[2(A9 Av) - v sin 8 cos 6¢ (A(p)z)]}
2v sin 6 26



Using the identities

2v2i((av)2) _ (and v 5 0 <V2f a((Av)2)> _ o2 3X(an?

2 ov ov avz

v ov
and

0% sin 0¢(80)%) _ ((ng)2) 2L 8IN0 , 5 3 <f sin o 8((A9)2)> ¢ sin 0 2X(20)%

862 892 o6 26 892

the Fokker-Planck equation can be written as

2 2
() + £<92< (av® , 3% <A9)2>> .12 [vzf Cawp - BT ¥ ((a0)?) 1Y sinzG((A§0)2>]
v

at 2 2 892 v2 v

c ov

2 . 2.2, .
o1 _a_l:f sin 0[(A6) - 2{(A0)%) _ (A8 AV) , §in @ cos 9_<(A¢)2>):| b1 3°vf sin 6(Av A0)
sin 8 96 o0 v 2 v2 sin & dv a6
. ((Av)z) 92gy2 . ((Ae)2> 32t sin 6
2v2 avz 2 sin 6 892 (3)

Correspondence Between the Random-Walk and Fokker-Planck Equations

The random-walk expression (eq. (2)) describes the average results of a large num-
ber of walks, or a large number of walks gives a numerical solution to the random-walk
equation. An attempt will now be made to write equation (2) in a form in close agree-
ment with equation (3) to see whether random walks can provide solutions to the Fokker-
Planck equation.

In equation (2) let N =2, £, =v, £g=9, and At = 1/y (where
v = v(v, 8) = collision frequency). By equation (1) Py+0qy = 1/2 and Py + dg = 1/2. Let

10



Ay -1 E&A_‘ﬁﬁ (a9)2 +ﬂ—2—9-(mp)2]
2(p1-q1)= vV 2'_ 2

\/ (av)?

[Z—e _1 3 (88)%) _ A Av sinf cosf (A¢)2]

2(p2’Q2)= v 9 Y -

Y (a0)2 L@
gy = ¥ (av)?

sty =V (20)?

and

us= fvzsin 6 J

The random-walk equation then becomes

)

. <<M> _3(20)® (A0 AV)  sin6 cos g ((A¢)2>) 1 K@9)? 1w
00 v 2 ((AG)Z) 28 v 06

_£[(<Av) BEC IR ) +V_Sm_29<(A(,,)2>) <41_M2_>+_1@>
2 av 2 2

c ( (AV)2> ov vy oV,

2 ;2
= - __l_. i [vzf <(Av) - a_<(_AL)._>_ + X ((AG)Z) +_Yﬂl_6 ((A(p)z))] (5)
v ov 2 2

1 i[f sin e<(Ae> _%(a0)® (A9 Av)  sing cos 6 ((A¢)2))] L1(and a%% 1 (a0 % sino

sin 6 98 28 v 2 2 VZ av2 2 sin g 892
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which differs from the Fokker-Planck equation by the terms involved with f/2 on the
left side of the equal sign, and by the absence of the mixed derivative term on the right
side.

To study these equations further and to perform random walks, one must specify
the initial and/or boundary conditions. To evaluate the Fokker-Planck coefficients, one
must specify the type of encounter. The differences between equations (3) and (5) will be
appraised for specific conditions.

Physical Application

The preceding results will be applied to magnetic mirror systems used to confine
ensembles of electrically charged particles. The Fokker-Planck coefficients will thus
be based on Coulomb encounters. The random walks will determine the ion distribu-
tions inside and the end loss from a magnetic mirror system. Such a system is sketched
in figure 3 and discussed, along with simplifying assumptions, in appendix C. The ve-
locity space of prime interest can be best described in spherical coordinates (fig. 4).
The polar axis is alined with the magnetic field about which there is axial symmetry.
This B field is assumed to be uniform over the central portion of the physical space.
The increased magnitude of B at the mirrors enters the problem by describing a loss-
cone boundary condition in velocity space. The random walks terminate at this boundary
as if it were an absorbing wall. These assumptions result in uniformity of f in ¢ and
in coordinate space and, thus, reduce a problem in six-dimensional phase space to two
dimensions in velocity space.

Mirro

=

magnet

0000000]
Jooooooo
90coood

oooooooooooo
oS0

ooooo

|#——— Uniform field

- CD-10573-25

Figure 3. ~ Magnetic mirror system.
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Figure 4. - Spherical coordinates.

The usual simplifying assumptions applied to the analysis of magnetic mirror sys-
tems reduce the Boltzmann equation to

for steady state (appendix C). The symbol s represents a sink (or source) density in
velocity space. For a steady state the rate of particles being injected into the system
equals the rate of particles entering the loss cone. Loss rates from the system can
therefore be expressed as

M= -str‘)d{r’ (7)

where integration is over the velocity space of the injection distribution. The injection
distribution provides the initial condition for the random walk.

To correct the random-walk results for the difference in the expressions on the
left sides of equations (3) and (5), the following equation can be used:

13



PR PY: 2 2/(p0)2 3 2 9
ncorrected random walk ‘/;{) (a(A;) >+ 9 <a(:2) >+ {(av) -_%?IL)_>+‘—£ {(A8)%)
v

+vsin29<(A(p)2>< 1 KD, 13 >
2 (an? v

+ [(an) - a((Ae)Z) _{ag av ,sinfdcosé ((A¢)2)> ___l_g(_(A‘Ou la\lblew
a6 v 2 ((AQ)Z) 06 v a6

The magnitude of this integral was negligible for cases of most interest. (This will
be discussed later.) When the mixed-derivative term of the Fokker-Planck equation is
is equal to that

2l

[e3]

(8)

negligible, such as for near isotropic field distributions, n
determined from the Fokker-Planck equation.

corrected

Fokker-Planck Coefficients

Expressions for the Fokker-Planck coefficients for the preceding physical applica-
tion will now be supplied so that the step sizes and probabilities of equations (4) can be
determined.

The general integral expressions for these coefficients are derived in appendix D
and can be expressed as

v - Vb cos Sr -
(Av) = -2T = - f(vb)dvb (9a)
3/2

(vz + Vg - 2VVb cos Sr)

vv. [sm 9 cos 6, - cos 0 sin 6 cos(cp @ )]
(ag) = - 2T b b b3/ @) av, (9b)
2

v (vz + vg - 2VVb cos 9 )

vV (v - V}, €OS 9 )[sm 8 cos 9b - cos 8 sin eb cos(go <pb):]

- T R — ... Pd
(A0 AV) == )3/2 £(¥,) dvy,

v (v2 + V% - 2vvy cos 9
(9¢)
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(v - v cos 9,)°

(an® =1 . - £V, 4V
2 2 172 19 4 3/2
(v +Vp - Zvvb cos Sr) (v + vy - 2vvb cos Sr) (9d)

2
T v2 v?vlz) sin 6 cos 6 - cos 6 gin Gb‘cos(gp - qab)]

7 33 (7 )%,  (9e)

2 2 2
(v +Vp - 2vvb cos sr) (v +Vy - Zvvb cos Sr)

sz YV sin 6, cos (¢ - ¢})
2y _ r sin 6 -\
((Ap)y =—= § — - - — 79 f(v)dvy, (91)

4 .2
v~ sin“0 V2

9 /
+ Yy - 2vvb cos Sr)

2 2 1/2
418 m 2 2 g g
y = m v + v -2vv, cos 9 £(V,)dv (9g)
9 In B(Zka> /( b b r) b b

where g is the ratio of maximum to minimum impact parameter and

Fz(za4m3=024z4m3
47e gmz A2

is the interaction parameter.

In the usual problems of interest the field distribution f(Vb) is not known. Also, a
test particle is usually just a background particle with a special label. Tracing the
paths of a large enough sample should determine test-particle distributions, which for
a self-consistent solution should be the same as the field-particle distribution. Such a
solution can be approached by an iteration procedure. A background distribution is first
assumed; the coefficients are calculated; and the paths of a representative number of
test particles are traced to determine their distribution. The distribution of test par-
ticles in the g th step of this iteration are used for the field-particle distribution in the
. + 1 step. This process is continued until the field- and test-particle distributions
agree within the desired accuracy. The accuracy, or amount of scatter of the final data,
in the example worked herein, was mainly set by the number of test particles used.

In the first step of the iteration process, use of a Maxwellian distribution is con-
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sistent with the theory of references 5 and 17. It is argued in these references that loss
rates should be insensitive to the assumed field-particle distributions. For purposes
herein, this may be considered a first-order solution. The insensitivity to field distri-
bution may indicate convergence of the iteration process in a small number of steps.

Mazxwellian distribution of field particles. - A Maxwellian field distribution should
provide an especially good first approximation to plasmas which are in near equilibrium
conditions. An example of such could be inside mirror systems having very high mirror
ratios so that field defects due to loss cones would be small.

Since a Maxwellian distribution is isotropic, all first moments of 6 are zero. (An
isotropic distribution corresponds to the diffusion approximation of ref. 5 and to the use
of effective Rosenbluth potentials in ref. 11.) Thus (A8 Av) is zero, and the mixed de-
rivative term is absent from equation (3). Use of

2
3/2 - mvi/2kT
m ) v2 e b b sin 0y doy, dey dvy (10)

(¥, )dv; = n
/4 b<2nka b

and integrating between the limits

reduces the expressions for the Fokker-Planck coefficients to the following (see appen-

dix D):

2
2 ’ - 2k
(AvV) = " 2 m yve v’/ b - erf( m v) (11a)
2 Vznka 21T,
kT
(an?) = - —P(av) (11b)
mv
n T 2
(@0)®) =L3Nﬁ1 &/ <1 ka)erfG/ m vﬂ (11c)
v Tm VvV mv2 2ka
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(ap)d =1 _ ((a0)® (11d)
sin“g

2 2
4n, (B° - 1) 2 ,ZkT -mv©</2KT kT A
V= o m vl b1 e b + {1 + b erf m
9Ing 2ka T™m Vv mv2 2ka

(11e)
Using equations (11) in (3) finally reduces the Fokker-Planck equation to
(a_f) BRI -_l-i[vzf(<Av) _a(an? +v<(A9)2>)] 80D 3 (¢ oo ) 4 (BN 2P
), 2 2 V2 v av 2 sin 6 30 o2 oy
((20)% 2%t sin 9
T2eme .2 (12)
2 sin @ 802
An interesting relation among the coefficients of equation (11) is
L2 (vE(@an?) - w@e? =1 (aw (13)
2v2 ov 2

Use of equations (6) and (13) reduces (12) to equation (18.7) of reference 5.
Equation (12) is especially useful because there is an approximate analytical solu-
tion to it in reference 5. The random-walk results will later be compared numerically

to this solution.
Using equations (11) reduces the random-walk equation (5) to

) - [fow - 229D o) (A ____a<<Av>2>+1_az>]
ot c 2 ov ((AV)2> v v ov

(a0 8 (€ cos ) + ((an? 22  ((a9)? % sine  (14)
2 sin 6 892

2
=_1 39 [v2f<(Av) _an?) + v{ (Ae)2>)] - 2
v2 ov ov 2 sin 8 26 2v2 av
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In terms of dimensionless variables the average value per collision of the variables
in equation (11) can be conveniently written as

2.1
/E' -V°E /T /E
9 2V _Oe o b _ erf(V ——°>
b Ty

T
av - {40 =3112@<E_?) L L
Yo B o/ - T, -V°E_/T T E'
V31 -——b'e 0/b+ 1+ b erf{ v/ —2
VVTE, 2V2E! Tp
— 2 T, —
(av)? = L&D _ LIN (15b)
Zvo ZVE0
2. ]
( [T -V°E_/T T E!
9 —1— —l’e 0/ b +41 - b - rf<V —9>
(Ae)2 =§M<& [V 1 7E, N 2V_E 'I;b . (15¢)
4 V4 2\E’ !— 2.t ' v“; ¢
=Y —e + 1+ erfivy/—
.V ”Eo VEo b.‘
(ap)? =1 _ (n0)2 (15d)
sin29
- -
3/2._1/2 ; 2
yTo/ “m E T E' -V°E' /T
__b_r= 0.518x10731 Bzv"_" 142 rf<V ——9>+——1——'e o/ T
n, Z Ty 2V2E' o/ .o
| Ty i
(15e)
where
E
v E =1my? E =_© >> 1
v0 o 2 o 0 x B
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and v, is some reference test-particle velocity. The quantity E'o is always refer-
enced to T, and velocity v is referenced to v, thus, v is actually referenced to
Ty, through E:)' If E'O/Tb = 3/2, then by the kinetic definition of temperature E
(p. 37 of ref. 18) is the average field-particle energy, and V is the ratio of the test-
particle velocity to the rms field-particle velocity. Thus for most applications
herein E;)/Tb was set equal to 3/2. When studying the case of injection of a mono-
energetic beam of test particles into a background ensemble, however, it was conven-
ient to set E o equal to the beam-particle energy. Thus for example, when the beam
particles had an energy of 10 times the average field-particle energy, E o/Tb was set
equal to 15, making the initial value of V _equal to 1.

Plots of generalized step sizes ¥V av? (B‘f E /Ty / In B)and vV (a6)2 (B‘/E;)/Tb /

‘/I:E ) for a Maxwellian field distribution are shown in figure 5. These curves were ob-
tained by use of equations (15a) to (15c).

Computing time and impact parameter cutoff distance. - Setting the maximum im-
pactrparameterr‘;t thja ;)egye length and the rriinimum value at a distance to cause a 90°
deflection results in

0. 49x1018 Te3/2

b (16)
Zzn(la/ 2

Bpebye =

lL4a—

L2—

LO—

B yureiv
inp

Step-size parameters

BT _IL_J«AVI%IV
VO g

A=

| I I I I I I I I
0 .4 .8 1.2 16 2.0 2.4 2.8 3.2 3.6 4.0
Velocity parameter, Vo/E)/T)

Figure 5. - Generalized step-size parameters in V and 8 directions.
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for Ty (in Kev) and n, (in m'3). Numerical values are given in table 5. 1 of refer-
ence 12.

If the maximum impact parameter is cutoff at the Debye length as in equation (16),
the average deflection which a particle undergoes per collision ‘/(Ae)z/y is extremely
small, as can be deduced from figure 5. Thus the corresponding computing time re-
quired to trace representative samples of test particles would be prohibitively large. It
was observed from the elementary one-dimensional (and nonbiased) random walks of
reference 8 and also from preliminary computer results that the average number of
steps to reach a distance m steps away from a starting point was nearly proportional
to mz. The time to take such a walk would thus be nearly proportional to mz/y. For
a random walk in the 6 direction the distance reached per unit time would correspond
to VW, which is simply the diffusion coefficient ((A9)2> .

Solutions to processes described by the Fokker-Planck equation are dependent on
impact parameter cutoff distance only through the Fokker-Planck coefficients. As shown
by equations (9) and (11), these coefficients are only weakly dependent on impact param-
eter ratio B. It thus appears that a particle taking the fewer number of larger steps
determined by a lower B cutoff would reach given locations in velocity space in about
the same time as if it took the larger number of smaller steps determined by a higher 3
cutoff point. The final walk time (loss rate) would possible be weighted by a function of
B.

As part of the following computer study, the effect of 8 on loss rates from and
distributions inside magnetic mirror systems was determined. Cases were selected
that could be solved analytically for comparison with the random-walk results.

Numerical Procedure

The procedure by which the random walks were simulated by the computer and the
manner in which velocity distributions inside and end losses from the magnetic mirror
system were obtained from the walks will now be described.

A computer flow diagram and a representative FORTRAN program are presented
in appendix E. Either the Lewis IBM 7044-7094 or 7040-7094 direct coupled systems
were used to perform the calculations.

Initial conditions for each random walk were determined by selecting at random
from prescribed injection distributions. The walks were terminated at the loss-cone
boundaries GC and 7 - Gc where
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(17)

] =sin'1 _1

: \/ Bc/Bo

and Bc/Bo is the ratio of the magnetic field at the mirror to that in the central uniform
region (ref. 12).

In any of the steady-state models selected for study herein, the average number of
particles injected per unit time equals the rate at which particles enter the loss cone.
The walks were studied one at a time, and a large enough number of them were traced
to form a representative statistical sample.

The velocity space to which the test particles had access was divided into zones.
For each of these zones values of probabilities p; and Py, step sizes ‘R(AV)2> /v and
'/< (A8)2) /y, and collision frequency were computed for the field distribution of inter-
est. These quantities were stored in matrix form and called for as the test particle
progressed about the velocity field, as described in appendix E.

During each step of each walk, a random number was selected for each of the two
components (V and ) and compared with probabilities Py and py, respectively, to
determine step direction. These random numbers were selected from a set of numbers
uniformly distributed over the interval from 0 to 1 (ref. 10). Whether the V compo-

nent of the step were in the positive or negative direction depended on whether the first
random number was greater or less than Py In like manner, the second random num-
ber determined the direction along 6.

Because step sizes were so small, the test-particle locations were not recorded
every step. They were, instead, tallied at constant time increments Ar. Each time
increment included A7p(V,0) steps. A count was kept of the number of times a test
particle was found in each of the velocity zones (boxes). A large enough number of
test particles Amax were walked to determine a velocity distribution. The time incre-
ments were selected so that usually no less than 10 nor more than 100 steps were taken
between tallys. The number of AT's required to reach the loss cone was recorded to
determine time of confinement and thus loss rate (appendix E).

After each set of Amax walks, new step size and probability matrices were deter-
mined with the test-particle distribution used as the field distribution. The elements of
the tally matrix were reset to zero and the process repeated, if desired, for the ¢ + 1
step of the iteration.

Numerous computations were made to explore the parameters of impact distance
cutoff B, sample size Am ax’ and iteration index for suitable field convergence
L= lmax' External conditions such as mirror ratio and injection distribution were
selected either for reduction of computer time or for comparison of random-walk re-
sults with cases having analytical solutions.
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RESULTS AND DISCUSSION
Influence of Impact Parameter

The scattering angles, thus step sizes, descriptive of Coulomb encounters are, in
general, so small that even to evaluate the effect of 8 with a reasonable amount of
computing time, required selection of very short walks. Short walks were obtained by
using low mirror ratios (BC/B0 =~ 1). The initial condition for this study was set to
simulate injection of monoenergetic particles normal to the magnetic field 6 = n/2.
Computations were carried out only for Z =1 and a Maxwellian field distribution.

A generalized parameter descriptive of the rate at which particles first reach pre-
scribed conical boundaries in velocity space is plotted in figure 6. These boundaries
(Gc and 7 - 9c) were selected so that no set of (either 100 or 1000) particle walks took
more than 15 minutes of computing time. At least three S values were used for each
boundary condition. The mirror ratios (eq. (17)) became extremely close to one as
b max approached values representative of Debye lengths; in fact so low that these re-
sults have little direct application to mirror systems of interest. These results may be
viewed as determining the average length of walk required to first reach a certain conical
boundary in a Maxwellian field.

The regions of velocity space covered by the walks were so small that the step sizes
and probabilities could be assumed constant over the length of the walks. This, in turn,

Distance between start
and finish of walk,
|(n12) -0, |,
rad

0. 147
. 180x107L
. 208x1072
. 233x1073
. 294x1074
.390x1070

Fokker-Planck solution
(see appendix F)

= 1.0x10°19 Open symbols denote 1000-walk sampling size
Solid symbols denote 100-walk sampling size

NppoOo

ng fog B

[ 8 ] A
B= _—go'.'_ ‘ -

o B_ .8 A N
Dgosﬁéu 4
SR

A R e R B B
0 1 2 3 4 5 6 7 8
Logarithm of impact-parameter ratio, log

Rate parameter,

Figure 6. - Effect of impact-parameter cut-off distance on rate of reach-
ing prescribed 8 distance away from starting pointat 7/2. Singly
charged particles of mass number 2; ratio of reference energy to
field temperature, 15.
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permitted an analytical solution of the Fokker-Planck equation (appendix F) which is
shown by the line on figure 6.

This analysis gave the result that the loss-rate parameter

2
th/2<E iy )
2 c
2
ng log B

was equal to a constant. This was verified over a range of 8 (from 103/2 to 1015/2)
by the computer results to within a spread of loss parameter of about 10 percent.

Some typical test-particle distributions are shown in figure 7. The marginal dis-
trihutionin V

VZV?) 'n—GC 11—60
FV(V) = f(9,v)sin 6 d9 = F(9, V)do

n
b 90 B¢

is a delta function in the analysis. It is sharply peaked in the computer results, nearly
all of the points plotted lying inside 0. 998 < v/v0 = 1.002. The marginal distribution in
0

o0

Fg(0) =508 / £(0, v)v2 dv = / F(6, V)dV

& 0 0

for both the theory (appendix F) and the computer experiment can be represented by
straight lines and agree well with each other.
The theoretical distribution from appendix F is

N
£,(0) -9
F9(9)=9 = ¢ when GCSGSE
ny 2 2
T_»9
(z c)
T (18)
T_»
= 1 1+2 when—sf)sw—@c
T T 2
T_9 T _9
2 ¢ 2 ¢ J
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Marginal distribution in V, Fy(V)
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Figure 7. - Test-particle distribution for short walks and constant coefficients. Ratio of reference energy to field
temperature, 15; sampling size, 1000; impact-parameter ratio, 10%; distance between start and finish of walk,
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The theory and computer experiment appear to be in satisfactory agreement for pur-
poses herein and encouraged applying the random-walk method to more complicated and
practical models.

Comparison With the First-Order Solution of Budker

Analytical solution. - Among the very few analytical solutions of the Fokker-Planck
equation applied to a magnetic mirror system is that of Budker (see refs. 5 and 19).
This analysis makes the usual simplifying assumptions of appendix B plus the assumption
of separability of the test-particle distribution functions; that is, it is assumed that

£(8,v) = f9(9)fv(v) (19)
inside the mirror system, and that the injection distribution (source) function is
8(9,v) = se(e)sv(v)
—mvz/ 2kT

Solutions are then sought where fv(v) is of the form e
particles perpendicular to the B field the solution of reference 5 is

b. For injection of

e
_mv?2 / 2kT tan 9
f(8,v) = Ce In (20)
8
tan -
2
. —mV2/2ka 9 7
s(8,v) = Ce ((A09)7) cos 0,0 (9 - E) (21)

where the constant C can be used for normalizing. Results were reduced to this form
by approximation of an integration over 6 by the mean value theorem. The end-loss
rate becomes

4
h=J2—'" (Ze)n,glnB 31n(\/§ 1)_\/5

+
m (41r€0)2(kT)3/2 (—1———)
n

si Gc

cos ec
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or

.3/2 cos 6
A%/ 24m =3.72x10731 "¢ (22)

z*nZ 10 8 m(ﬂ)
BO

In this solution the Fokker-Planck coefficients were based on a Maxwellian field
distribution. It is thus like a first-order solution.

No energy gain or loss from the system was considered other than that added by the
injection process or carried away with the escape of particles through the mirros. Thus
the mean energy of the particles injected Einj should equal the mean energy of the par-
ticles escaping for a steady-state solution. Integration of the product of equation (21)
times 1/2 mvz, and then division by n gives the mean energy per test particle to be

Einj =0.43 ka

Thus the test particles are injected at a low energy to fill in the deficiency in velocity
space due to the predominant escape of low-energy ions.

Random-walk solution. - Some preliminary insight into the random walk can be
gained from inspection of the step sizes and probabilities of taking steps in the various
directions. Step-size parameters for the V and 6 components and for a Maxwellian
field distribution are plotted in figure 5. Values ur~d in a typical set of walks are given
in a matrix form in the computer listings presented in appendix E.

For a given field distribution, path lines, as shown schematically on figure 1(b),

can be envisioned. Use of the step sizes V((Av)z) /v and V( (A9)2> /v from figure 5

permit study of the path lines for a Maxwellian field distribution. The magnitude of the
slopes of such path lines increases with an increase of V because of the pronounced

decrease of EAT)Z with V. It is apparent that the path line pattern is most conducive
to the escape of particles at low V. It is in turn relatively easy for a particle in the high
slope region to go to still higher velocities where escape is more difficult

The bias terms are equally important in the test-particle behavior. Entering into
the bias term (p1 - ql) in the V direction (eq. (4)) is a dynamic friction term AV.
This term (discussed in ref. T) is negative and tends to retard the test particle to zero
mean velocity. Opposed to influence of AV are the positive valued expressions
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L2, —5 2
2 v ov

which tend to diffuse the particles to the thinly populated regions of space at high V. In
spherical coordinates the available volume in velocity space varies as V2, making a
large amount of room for particles at high V.

Similar terms appear in the (p2 - q2) bias, which occurs in the 6 direction. All

terms except the last (sin 8 cos 6/ 2)(Acp)2, are zero for a Maxwellian field distribution.
For higher order solutions ( > 1) the Af and -A6 AV/V terms tend to move test par-
ticles toward 6 = 7/2. These terms thus help confine the particles. Opposed to this

are the -1/v(& (A9)2> /20) and [(sin 6 cos 6)/2] (Aqo)2 terms that make it easier for the
particle to escape.
The initial locations of the test particles were determined by selection of random

numbers from a distribution to simulate the injection velocity pattern of equation (20) as
shown in appendix G. The walks were always started at the 0 = 7/2.

Preliminary computer results verified that the test particles which were injected
at low energies (according to eq. (21)) had a good chance of escaping with a relatively
low number of steps. If, however, they remained inside the mirror system and by
chance diffused to the high velocity region, their rate of escape was much reduced, even
though the collision frequency was increased at high V. The test particles rush to such
higher velocity zones at the expense of energy given up by the field particles. The field
temperature was thus corrected for the energy exchanged with the appropriate test par-
ticle after each walk (appendix E).

Comparison of results. - Test-particle mai‘ginal distributions from the random-
walk procedure are compared with the analytical results of reference 5 in figure 8. In
general, the test particles distributed inside the mirror system in much the same pat-
tern as predicted by reference 5 (figs. 8(a) and (b)) for the first-order results (I = 1).
As the iteration process was continued, the test particles distributed in a slightly dif-
ferent pattern. The peak of the distribution shifted to a slightly higher V. Beyond a
of 2, however, changes were within a 10- to 20-percent scatter of the data for the usual
sample size Amax of 500 particles. No attempt was made to optimize sample size
against B. The parameter B8 was usually selected for completion of Amax times
lmax walks in 20 minutes of computer time.

Starting the I = 1 calculation with the field-particle distribution in the 6 direction
cutoff at 0 c and 7 -0 c appeared to give results as good as starting with a full Max-
wellian distribution and completing the ¢ = 2 step. By so doing the final number of
steps in the iteration process (I max) could be reduced by one.

The assumption of separability (eq. (19)) of the distribution function is often used to
simplify analytical approaches (refs. 3, 5, and 19). This appears justified for the typi-
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Figure 8. - Comparison of random-walk results with analysis of reference 5. Ratio of reference
energy to field temperature, 1.5 sampling size, 500; atomic number, 1; impact-parameter
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cal set of data on figure 9. The open data points were obtained from the test-particle
distributions of the random walk. These are a normalization of the KTJK(J,K) matrix
(appendix E). The solid symbols denote the product of the random-walk marginal dis-
tributions in 6 multiplied by the random-walk distributions in V. The lines are the
analytical results of reference 5. The shift of the peaks of the computer results to values
slightly higher than the analytical results is not due to the separability assumption. Good
agreement is shown between the two studies for the outlet (loss cone) as well as for the
inlet or injection distribution (figs. 8(c) and (d)). Thus the injection distributions of
reference 5 appear quite satisfactory for a steady-state solution.

A comparison of the random-walk loss rates with the results of reference 5 is
shown in figure 10. Agreement is close at a mirror ratio of 1.2. At higher mirror
ratios, however, the loss-cone boundaries are extended enough that the chance of a par-
ticle walking to high V fields before escape is considerably improved, accounting in a
large part for the reduction of loss rate with increase of Bc/Bo'

The rather steep decrease of loss rate with mirror ratio obtained from the random
walks quite closely follows the 1/ log(Bc/Bo) trend predicted in references 3 and 13.
The resulis of reference 5 differs by the inclusion of cos 0 c in equation (22).
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Figure 10, - Comparison of random-walk loss rates with the ap-
proximate analytical solution of reference 5.
The correction to the source term consisting of higher order terms in equa-

tion (8) was evaluated numerically for a Maxwellian field distribution. For this case,
equation (8) reduces to

4 2
- 0.003x10-30 2 n" log 8

Beorrected = Mrandom’ walk m1/273/2

This correction, independent of mirror ratio is negligible in the random walk results on
figure 11.
Computer time expenditure. - Each complete set of Amax walks and ¢ steps in

the iterative procedure required less than 20 minutes of computer execution time. It
appears that this random-walk procedure could be extended to include special or time
coordinates, or both, and work more general problems with reasonable computer time
expenditure.

CONCLUSIONS

From a study of computer simulation of random walks of charged particles through
ensembles of field particles inside magnetic mirror systems, and by comparison with
results obtained from the Fokker-Planck equation for cases that could be solved analyt-
ically, the following conclusions were reached:

1. Computer time could be greatly reduced with no noticable reduction in accuracy
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by a selective sampling of random numbers from the low impact-parameter range of
the binary collisions used herein.

2. Test-particle distributions were insensitive to the assumed field-particle dis-
tributions.

3. The assumption of separability of the velocity distribution appears suitable for
application to mirror system analyses.

4. End losses determined by the random-walk method were in close agreement with
an approximate analytical solution of the Fokker-Planck equation at low mirror ratios.
At higher mirror ratios the loss-cone boundaries increase permitting more test par-
ticles to reach the higher regions of velocity space where escape is much more difficult.
The loss rate varies inversely as the logarithm of the reciprocal of the mirror ratio.

5. Each complete calculation, for a given set of initial and boundary conditions (in-
jection velocity distribution and mirror ratio), was completed within 20 minutes of com-
puter time. The study was limited to steady-state problems in velocity space. It ap-
pears that this random-walk procedure could be extended to include spatial or time co-
ordinates (or both) with reasonable computer time.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 20, 1969,
120-27.
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APPENDIX A
SYMBOLS

[The International System of Units (SI) will be used throughout with the exception of
temperature T, reported in keV, and the corresponding Boltzmann constant k, re-
ported in J/keV. ]

A

F(8, V)

Fy(0)

F (V)

mass number
determinant of elements in metric tensor

elements of metric tensor

elements of cofactor of metric tensor
magnetic field
impact parameter

normalization constant

energy
2
mv 0/ 2k
electric unit of charge
VOV2 sin 6
normalized probability density times scale factors, —— (v, 9)
n
b

[v.0]
normalized marginal distribution in 9, / F@©, V)dv
0

n—ec

normalized marginal distribution in V, / F(, V)do
0

probability density

Rosenbluth potential = f 17, )u d¥,

Heaviside unit function
Rosenbluth potential = ﬁﬁb) 1 dw'r'b
u

=18 5 /kev

Boltzmann constant = 1. 6x10
step number in iteration process

mass
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u

u(Ey, £y - -

ENF<:<§<

34

L gy

number of dimensions

number density

number of particles lost per unit time per unit volume of coordi-

nate space

probability of 1 step in the positive direction along the ith coordi-

nate

probability of 1 step in the negative direction along the ith coor-

dinate
general curvilinear coordinate
r Kagh ag¥y
number of particles injected per unit time per unit volume of phase
space
random numbers
temperature
N agH)
time
magnitude of relative velocity between a field and test particle
probability of particle being located at grid location
£ B9y - - s By
v/v o
random number
velocity
some arbitrary collisionally dependent quality

atomic number

impact-parameter ratio, bmax/bmin
_ ()% m g
interaction parameter, = ——
4negm2

delta function, also used to denote finite difference

azimuthal angle between orbital and fundamental collision planes

capacitivity of vacuum



n number of components changed per encounter

0 angular distance from polar axis

sr angle between test and field-particle velocity vectors
v collision frequency

£ arbitrary coordinate in phase space

o differential scattering cross section

Q@ azimuthal coordinate

Q solid scattering angle

Subscripts:

b field particles

c collisional value, also used to denote loss cone or value at mirror location
e electron

inj injection

0 reference value

Special symbols:

average per collision or per step

O time average
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APPENDIX B

TRANSFORMATION OF THE FOKKER-PLANCK EQUATION FROM
RECTANGULAR CARTESIAN TO SPHERICAL COORDINATES

The Fokker-Planck equation can be written in rectangular Cartesian coordinates as

2
(@i) = -0 ((avy) + 137 (gavk av?))
ot/e ovi 2 oyt ¥

Superscripts are used in this appendix to denote component direction, leaving subscripts
to denote covariant differentiation. Summation convention of repeated indices will be
used. The subscript ¢ on 0f/dt means changes of f due to collisions.

Following the procedure of appendix IV of reference 11, this equation can be written

in covariant form as

r'l(ﬂ = -¢TH 4+ 1(esHy)
ot e s M 2 s Ly

which is valid for any set of curvilinear coordinates, q1, qz, q3.

The quantity I' is an interaction parameter,

TH=al(h )= (aqh 1] (B1)
and
siV =al®a¥T(g ) =(aq" ag¥) rl (B2)
The terms T'S*Y are dispersion coefficients, and I'TH is related to dynamic fric-
tion.

For spherical coordinates q1 =v, qz =6, and q3 = ¢. The elements of the

metric tensor are
all = 1

2
99 =V
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a33 =v2 sin26
auv=0 if w#*v

and the elements of its conjugate are

v2 sin26

atv =0 if u+v

By the procedure of covariant differentiation

i, ST ey - 2 ()

where the Christoffel symbol {olzlp} with repeated indices equals 1 ova and a is
a a
oq
the determinant of the matrix of elements auy. For spherical coordinates

a= v4 sin29

Thus,

(vzf('Av)) + 1 —@—(f sin 8(AB)) + 8 (f(A@))

r¢TH) = 19
B2 sin 8 26 3

In like manner

2 [J,y)
resty), =222 (Vass 2 ( af v fS"“’")
Ky 2 aqM ag? \2 oq? \/—{wu}
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and for spherical coordinates

vy/oa oa oa
_a(\[i{cgu}fs“‘*’) =2 |v2 sin g fsH® L( wy , T uy wu)
2q” 2q” 2 \aqt  x® ¥

2

=~ i[vz sin 6 f(vS22 + v sin26833)] + _a—[sin 2} f(2vS12 -v~ sind cos @ S33)]
ov 00

+—a— [2fv(sin 9 813 + Vv cos f 823)]
9

where use is made of the symmetry of sHY, Finally the Fokker-Planck equation in
spherical coordinates becomes

2.2, 2 2 2
(ﬁ) =-L 2 2(an) - L2 (sine(an)) - & (Kag)) + L IVE(AV)T) | 1 9%f sin 6¢(a6)%)
), 2ov sin 6 26 o9 o2 2 2sin0 2

2 2 2
L1K@ae)%, 1 )

2 2 stin g 8v 96

(v sin 0f(Av 46)) + L —aTaa— W2H(Av Ag)) +—L— 2 (sin 05(A8 Ap))

% v @ sin 6 38 9¢p

.1 e [v3f(< (29)) +sin29((A<p)2))] 1 —a—[f sin 6 (2<A9 Av) - v sin 8 cos 9((A¢)2))]

2v2 av 2v sin 8 09 (B3)

g a_[f<(Av Ap) +Y.CO5 8 (ag A<a>)]
sin 8
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APPENDIX C

PHYSICAL MODEL OF MAGNETIC MIRROR SYSTEM

The physical model to which this analysis is applied is the usual simplified one,
well described in many references; such as, for example, pages 186 to 189 of refer-
ence 5, pages 3 to 5 of reference 13, pages 2 and 3 of reference 3, and pages 7 to 9 of
reference 17. In essence, the magnetic mirror system provides a long cylindrical re-
gion of uniform magnetic field (fig. 3). The mirror regions are assumed to be rela-
tively short so that essentially all the Coulomb scattering occurs in the central re-
gion. Only binary collisions and classical particles will be considered.

Once a particle enters the loss cone in velocity space, no matter where it is in
physical or coordinate space, it is assumed lost from the system. Only scattering of
ions off other ions is considered. Thus electrons serve only as a neutralizing and
shielding background of particles. For study herein, no macroscopic electric field will
be accounted for except possibly as a boundary condition in the manner of reference 20.

The radius of the confining field must obviously be much larger than the ion cyclo-
tron radius. This can be accomplished by suitable magnitude of the B field. The
azimuthal symmetry of the B field makes Vv X B- va = (0 as shown in appendix A-1
of reference 13.

These assumptions culminate in the elimination of the gradient terms, in velocity
as well as in coordinate space, from the Boltzmann equation. The Boltzmann equation

thus reduces to
of _ (a_f> + 8
ot ot c

where (Eif/at)c is the change of f due to collisions, usually determined by the Fokker-
Planck equation, and s represents a sink density in velocity space, uniform in coordi-
nate space.
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APPENDIX D

FOKKER-PLANCK AND RANDOM-WALK COEFFICIENTS
IN SPHERICAL COORDINATES

The Fokker-Planck coefficients are time averages of various first- and second-
order increments of velocity due to collisions. The random-walk process, in turn, re-
quires the average per collision of these same velocity increments. The two types of
averages, denoted by the angular brackets and bar notations, respectively, differ by
the collision frequency p. Thus only one set of coefficients and the collision frequency
need be derived for the physical conditions of interest.

The time rate of change of some collisionally dependent quantity Y averaged over
all scattering angles and all velocities of the scattering (field) particles is

(V) = f1,@,) [Yuolu,)en a7, (D1)

where the subscript b refers to field particles, and o is the differential cross section
of scattering over the solid angle Q. The magnitude of the relative velocity between a
test-particle of velocity Vv and a field particle of velocity Vb is

u= v2 + vg - 2vvy, cos 9, (D2)

where Sr is the angle between V and Vb' The distribution function of field particles

is denoted by fb and is normalized so that
S1@)a7, = n

Using Rosenbluth potential (ref. 11) defined as

— 1 —
h= [ (V)= dv
/ T W

and
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h

and letting Y equal the it component of AV yields (ref. 11)

(avhy =71 i=1, 2, 3,
ovl

the covariant form of which is given by equation (B1)
(ag) = Taf?(h )
b
For Coulomb encounters

_zitmg
2.2
41reom

T (D3)

where B is the ratio of the maximum impact parameter bmax to minimum, b

. min’
When Y is set equal to the product Av! AvJ, it follows that (ref. 11)

. 2
(av' avdy =T a.g ' i,j=1, 2, 3
av! av?

and the covariant form is given by equation (B2) as
B AqVy = T MW, VT
(aq" Ag¥) = Ta™a¥T(g )
When Y =1, it is apparent from equation (D1) that the collision frequency is ob-

tained. Using the well known scattering relation involving solid angle Q, impact pa-
rameter b, and azimuthal angle ¢

o(Q)dS = b db de

in (D1) gives

(2 2
v= ﬂ(bmax - bmin)g

which is an invariant and independent of the coordinate system. In spherical coordi-
nates, the coefficients of main interest are
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(avy = 70

av

(ap) =T b

v2 06
<A¢> - r oh
v sm29 o¢

v2 08 ov v 98
2
((and =1 28
avz
o T (32 2
((a0)) =2 (28 4+ v 28
v4 892 ov
2 r [a? 2. ag 2
((Ap)) = € 4 v sin“s %8 4 sin 9 cos 6 °&
v© sin’d a(p2 ov %

(av Ay = —TL <82g __la_g>

V2 sinze av dp VvV 0@

2
(A6 A@) = T (ag_cose_a_g_>

v4 sin29 068 d¢ sin 8 ¢

These expressions can be reduced one step further without specifying fb since differ-
entiation is with respect to the coordinates of the test particles.

Azimuthal symmetry. - For aximuthal symmetry 9/3¢ is zero and thus (A¢),
(Av Ap), (A8 Ag) are zero. The remaining expressions are reduced as follows: Using

cos 9 = cos 0 cos 6}, + sin 0 sin 6 cos(e - ¢p)
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and differentiating under the integral sign gives

vV -V, cO8 Sr -
(Av) = -2T - £(V,))dv, (92)
3/2

(v2 + vg - 2vvb cos Sr)

vv. [sin 8 cos 8, - cos 8 sin 8, cos(p - ¢ )]
(ag) =-2Lf b b b LEFICAL A (9b)

2 3/2

(vz + vlz) - 2vvb cos ’Sr)

v, (v - v, cos 9 )|sin 6 cos 8, - cos 9 sin 6, cos(¢ - )]
(Ao Aavy = L f 0 b ] Pp T B985 7 ST Pp CORNY - Dy (CALTA
V2 9 9 3/2
(v +Vy - 2vvb cos Sr)
(9¢)
2
(v -v, cosd) -~
and=rf - - 1 S A s £(7,) ¥,
1/2 3/2
(2042 - 2 c0s0.) 72 (42 4 42 - 2vv, cos 5.
Ve + vy - 2vvy cos r) ve 4+ vy - 2vvy cos 9, ()

2
2 s .
2 vy [sm 6 cos 6, - cos 6 sin 6, cos(p - @ )]
((a0)% =L , v L] R b T T
3/2

s f (Vb) dvy (9e)

<

: (vz + Vlz) - 2vvb cos Sr) (v2 + v% - 2vvb cos Sr)

v - vV}, sin 6 cos(g - ¢p)
oty =L emo (), o9
v sinZe ( 2, 2 )1/ 2

v +vb-2vvbcosé)r

2 2 1/2 = \ =
V= AT ((m f (v2 + vlz) - 2vvb cos Br) f(Vb)dvb (9g)
91np3 2ka

where bmin was set equal to the classical distance of closest approach
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_ (ze?  _ (z¢)?
min

3 6ne kT

4ne0(E ka) o¥Tp

The average value of these quantities per collision, in dimensionless form, are

V - Vb cos ’Sr -~ -
~ — £(V,)dv.
2 (V2+V2—2VV coss)
AV=M=-_9M(F'> b b . (D4a)
v 2 g2 \E, f‘Rf + Vi - 2VV, cos 9 f(Vb)dVb
Vv, [sm 6 cos Gb - cos 0 sin Gb cos(p - qob):’ - =
— P #(v)avy
2 ( 2 \8/2
np - (80) _ 91nB<T> \ +Vb'2VVb°°SS)_ L
v 2 y252\E / ‘/ + Vb - 2VVy cos 9, £(V,)dV,
(D4b)
VVb(V Vy, cos 9 )[sm 6 cos eb - cos @ sin e_b cos(go qob)] o )d\-;
, 3/9 b
—— (s0av) 9m3< ) (V2+Vb—2VVbcosS) o B
v 4 g2y2\E f Yv2+ V2 - 2vV, cos 9 f(Vb)dVb
(D4c)
1 (v - Vy, cos f)r)2 - .
J 5 o2 ) 3/2 V)V
2 Ve + Ve - 2VV 9 2 2
av? ((AV)2> 9 n B/T > +tVp b €95 Up (V +Vy, - 2VV cos sr) (D4d)
v g2 \E; f ‘IVZ + VE - 2VV, cos 9, £(V;)dV,
2)? - {29
14
i{ v2 - vzvﬁ;in 6 sin 6 - cos 6 cos § cos(p - (pb)] 2 f(V )dv
2. o2 3/2 vV
o sz Ve + V" - 2VVy cos 9, (V2+V§-2vvbcos8r)/
a2 \E, SN2+ V2 - avv, cos 5 €7, )V (Do)
b - 2VVy, cos 9, £(Vy )dVy,
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2, .
sin @ sin 8, + cos“# sin 8
o fV2- vvb< i Ly b)COS(qD L
m g b : ., simf s £(V,)d¥,,
3 (ae)d 9 \E YV« V2 - 2VV, cos 9, (D4f)
(Aq)) = QD = — - S —— ,27 . P ) _ _—. - ——————
v 4 v4g2 sine f JVZ + V2 - 2VV, cos 9 £(V)aVy
and
3/2 /[ \1/2
2 E o
y=2LE (m ) [ 0 v2 4+ v2 - 2vV, cos o_f(V,)dV (D4g)
9 In g \2kT T b b r e b
b
where
V.
veY v, =2 g -lmlokel  p>>1 (D5)
VO v0 2

Maxwellian distribution. - A popular simplifying assumption is that the field par-
ticles are distributed in a Maxwellian spherical distribution. This a case of the "'diffu-

sion approximation' on page 175 of reference 5 and corresponds to the use of '"'effective
Rosenbluth potentials'' as on page 15 of reference 19. With this assumption

2

3/2 -mv; /2kT

_ m 2 b b _.

£, dvy = nb(ZWkT ) vy € sin 6, doy dey, dvy (10)
b

For a spherical distribution, ’Sr can be replaced by eb. Integrating between the limits

and
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gives

2
9KT, -mv2/2KT KT
g=g(v)=nb[ be b+<v+—-k-))erf( iv)]
mm mv 2KT

The remaining potential h can be obtained from

2n,
h=V2g=—lzerf< m V)
v v Vszb

Since both g and h are independent of  and ¢, it is apparent from (B1) and
(B2) that

(A9) = (Ap) =(A8 Av)= 0

The remaining terms of interest for this field distribution are

2
2n T -mv“/2KkT.
(AV) = b 2 M e b _ ot LU (11a)
G 2 \ 27kT, \ 2KT,

v

KT

((an? = - 'Eb (Av) (11b)
_mv2/2k K
(a0)% =_n£ 2KTy 1e mv"/2KT, +{1- b erf " L (11c)
V3 ™T™m V mv2 Zka

(6p)® =1 ((20)?) (11d)

sin“8g

and

2 2
. 4nb(B -1) m \2 or 2KTy, 1 e—mv /2ka . i +k_T£ or m
9npg 2ka Tm Vv mV2 VZka

(11e)
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These expressions for (Av) and ((Av)z) agree with those of reference 5 and with
those of Chandrasekhar (pp. 73 to 75 of ref. 12). These coefficients are called paral-
lel components since they are changes in v in a direction parallel to v. Agreement

with these references is also obtained for the perpendicular component of diffusion
which is

(av))? = v2[(a8)% + sino((ag)?)

Remaining quantities of interest are

1 2 1 1
E' -V2E'/T E
9 V42 e O TP erf<V __‘1>
av ={AV) | 21‘1_ﬁ<%> Ty A TT
Y 2 2\E' 2. 1 ;
B T, -V°E /T T E
v3[ L t: e o’ "b +[1+°P ri[va/—2
vV 1TEO 2V2Ev T
(15a)
T,
(avV)2 = - —P_QAv (15b)
2VE;)
. -VzE /Ty T, E!
— 14— 1- - erf| V4| —
(o2 ={@0)_9 1n B(T) vV Y7E, - 2VE, b
y 4 4 2\E 2 ;
v*s -V E, /T T ,E
—1 b + <1 + b )erf(V _9
v 2VE! T,
(15¢)
(ap)? =1 (a9)? (15d)
in2e
and
-31 4 2 Y [} ] 1,2
0.518x10° %" n, z*g%v ,E T E T, -E.V2%/T
V= - L _° <l+ b rf(V -—°>+—-1- —b-'—e o b
r3/2,,1/2 T, oV2E' T,) V \7E|
b 0 (15¢)

where B >> 1.
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APPENDIX E

DESCRIPTION OF COMPUTING PROCEDURE

A flow chart representing a typical calculation procedure is given in figure 11. The
corresponding FORTRAN program and some typical results are included at the end of this
appendix. This is preceded by a key to the computer words. A brief description of the
program to perform the random walk studies is given in the following discussion.

The distribution of field particles is represented by KTJK(J, K) matrices. The
indices J and K represent partitions in V and 6, respectively. In most of the com-
putations this was an 11 by 13 matrix, thus dividing the velocity space of most impor-
tance into 143 zones. The initial (LL=1) field distribution was read from data cards.

The velocity field to which the test particles had access was also divided into zones.
These zones were identified by subscripts M and L. Step sizes, DVSQAV(M, L) and

DXSQAV(M, L), and probabilities, TWOP(M, L) and TWOR(M, L), were computed over
" the ranges of M and L for the field distribution specified by the KTJK matrix. Inte-
gration of equations (9) with respect to ¢ was by Gaussian quadratures. Integrations
with respect to V and 6, weighted by v2 sin 0 (v, 6) as in equations (9), were replaced
by summations over the J and K indices with weighting by KTJK(J, K).

Because step sizes are so small, the test-particle locations were only recorded
every MMAX(M, L) steps. To obtain steady-state distributions, it is desired to locate
the test particle after each small constant increment of time, Ar. The number of steps
per constant increment of time is

(RMAX1)(y(M, L)) (E1)

RMAX(M, L) =
y(V2=1, X2=71/2)

where RMAX is the real number counterpart of integer MMAX. The value of RMAX1
is specified at the beginning of the program and should be judiciously selected to keep
computing time down and yet obtain accuracy.

An alternate procedure to the use of velocity zones and matrix descriptions when
L1~1 was to specify a Maxwellian distribution of field particles and use equations (15).
In this way the step sizes, probabilities, and number of steps per time increment are
continuous functions of test-particle location and are integrated over a continuous field
distribution. A comparison of this procedure with the matrix procedure served as a
check on the required number of velocity zones for sufficient accuracy in the matrix
representation. Excellent agreement was obtained by use of the 11 by 13 matrices.
Suitable values of RMAX1 varied from 10 to 103 depending primarily on B.

The test particles were labeled by A (used as an integer). It was found that the
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walks of about 500 test particles (AMAX=500) was required for a representative sample.

The initial conditions for the random walks depended on the injection distribution
being simulated. For the example on the flow chart, V2 was always set at 1.0 and X2
at 7/2, representative of monoenergetic injection and normal to B field. This initial
condition was used in the short walk calculations. For simulating the injection distri-
bution of reference 5, the procedure of appendix G was used.

The random-walk proper comprised a small part of the programming effort. In
the two-dimensional space of interest it required the random selection of 2 numbers,
RNR and RNS. The call, RAND (RN1), for the first random number, RN1, must be
preceded by SAND (RN1). This sets up addresses in the congruence type of random-
number generator subroutine of the Lewis computer library. This is a pseudo-random
number generator inasmuch as each time SAND (RN1) is called the same sequence of
random numbers is started again. Comparison of RNR and RNS with TWOP and TWOR
determines in which directions the steps are taken. Step sizes and probabilities are
held constant over MMAX(M, L) steps. After MMAX steps are taken the new location of
the test particle is determined and tallied. Also after MMAX steps the energy transfer
between the field and the test particle is determined and summed to that of the preced-
ing N groups of MMAX steps.

If the test particle has not yet reached the loss cone, it is tallied according to the
procedure on the lower right of the flow chart. It is simply located in one of the veloc-
ity space zones and credited to the corresponding element of a KTJK matrix. A cer-
tain probability exists for a particle to wander about indefinitely inside the mirror sys-
tem without being lost. A walk length of 5000 MMAX steps was therefore set as a limit,
after which the walk would be terminated and the next particle selected. The number
of such walks was labeled IBAD.

When a test particle reaches a loss-cone boundary, the flow in the chart moves to
the left. If it is the AMAXth particle, the tallying procedure in the lower left is fol-
lowed. The marginal distributions in V and 6 are then determined along with a
counting of the total number of points (KTOT) tallied in the KTJK matrix. The sum of
the values of N when the particles first reached a loss-cone boundary is printed out
as SUM of NA.

Denote the collision frequency per test particle at X2 =7/2 and V2 =1 by
p(n/2, 1); and define QUCOR by

QUCOR = _\2

| m

ny Mass of a deuteron

Then by use of equation (9g)
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E — -]
QUCOR = 0. 896x10" 18 2.4/ © KTIK(J, K) E w, Y1+ V2-2V- SK- cos xiJ
\r
b .
1

KTOT
LK

for z = 1. The average number of Ar time increments per walk is SUMNA divided by
AMAX. The average number of walks per unit time multiplied by

(Tg/ 2/nb)\/m/Mass of a deuteron is then equal to (QUCOR - AMAX)/(SUMNA - RMAX1),
and the loss rate parameter can be expressed as

nT3/2ym _ 0.578x10 13 QuCOR - AMAX

n2 SUMNA - RMAX1

After each walk, the field temperature is corrected to account for the energy trans-
ferred with the test particle. Assuming AMAX particles in the field ensemble results in

SUMNA
AT, A 2 2
= (V2° - VINJ) (E2)
T, SUMNA - AMAX
b N=1

The correction is applied through the dependence of step sizes and probabilities on

V\/m/szb as in equation (10).

After A reaches AMAX the resulting test-particle distributions are used to calcu-
late new step size and probability matrices, and the iteration process in LL is continued
until LL reaches LMAX.

FORTRAN SYMBOLS

A test-particle number

AM AMAX - IBAD

AMAX size of test-particle sample
BMAX impact parameter ratio

BRATIO mirror ratio

CK cos(X)

CRELi cos 0 cos Oy + sin 0 sin 6} cos(nxi)
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CX cos(X2)
CXK CX*CK
DELTAV(J,K) (AV)(J,K)
DELTAX(J,K) A4(J,K)

DELTHA (TQ)_Z
DELVHH DELVHI*TR
DELVHI increment of V between successive J indices
DELVSQ (av)?
DELXHI increment of 9 between successive K indices
DENOM1 Y KTIK(I, K)GND(J, K)
J,K
SUMNA
DVNSQ Z v2? - ving?)
N=1

DVSQAV Vav)2
DXSQAV Y(26)2

EOPT E:)/Tb

FDV 1. 21/(SIB*EXP(Zx*Z))

FDVi Ti/Ui when i=1,2, 3,4
FDVSi TT22/Ui

FDXi V*SRELi/Ui

FDXSi 1.0/FNUi - Y*SRELi**2/U2
FFVi FNUi*FDVi* FDVSi

FMIXi V*+SRELi*FDVi

FNDi SQRT(1. 0+Y-2. 0%V*SK+COS(x;))
FNUi SQRT (W+Y-2. 0#V2+xV*(CRELi))
FPSIi (Ti+V*CX*SRELi/Sx)/FNUi

FRICH(M,L)  2.25%S*NUM9/(W+*NUM1)
FTERM(M,L) -6.75*SxNUM6/NUM1
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FTHEi V*SRELi*(V2-2. 0xCRELi-3. 0xV2*Y(SRE Li/FNUi)**2) /Ui

F(THETA) KMARGX(K) print out
FV ERF(Z) -R
F(V) KMARGV(J) print out
GDV Z w; FDVi(x;)
i
GDVS Y w,FDVSi(x;)
i
GDX EwiFDXi(xi)
i
GDXS ZWiFDXSi(xi)
i
GFV D w,FFVi(x,)
i
GMIX > w, FMIXi(x;)
i
GND ZwiFNDi(xi)
i
GNU > w; FNUi(x;)
i
GPSI }:wiFPsn(xi)
i
GTHE Y w, FTHEi(x;)
i
IBAD number of walks discarded due to N reaching value 5000
IX number of steps in positive 6 direction
1Y number of steps in positive V direction
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KJ(J)

KMARGV(J)

KMARGX(K)

KTJK(J, K)

KTOT

LJ(J)

LL
MMAX
N

NA

NUM1, NUM2, . . ., NUM9

QUCOR
R, RN1, RNR, RNS
RAND
RMAX
RMAX1

SAND

SIB

number of points in J th interval of injection distribution
in V

> KTJK(J, K) used for marginal distribution in V
K

> KTJK(J, K) used for marginal distribution in 9
]

th th

tally of points in J~ increment of V and K
of 8 for field distribution determination

increment

> KTJK(,K)
Ik
number of points in Jth increment of V in loss-cone
distribution
step number of iteration process
number of steps between tally points
number of groups of MMAX steps

number of groups of MMAX steps when particle reaches
loss-cone boundary

used in weighting functions by KTJK and summing over
Jd and K

collision frequency at V2 = 1.0, X2 = /2
random numbers selected from uniform distribution
call code for random numbers
real MMAX
MMAX when V2= 1.0 and X2 = 7/2
In 8
(E! 6/T)?
o b

initial call code to set up addresses in random number
generator
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SRELi

SUMNA

SXK
Ti

TR
TTi
TWOP

TWOR
Ui

V2
VHH

VHI
VHT

VINJ

vO
vouT
VSQFV(J)

VSQFVT

VSQKI(J)
VSQLJ(J)

VSQKJIT

VSQLJT

56

sin X
sin § cos 6), - cos 0 sin 6 cos(nxi)

AMAX
NA

A=1
sin(X2)
sin(X2)sin(X)
V2-VxCRELi
1 - AT, /Ty, seeeq. (E2)
VxSQRT(1. 0-CRELi**2)

2p1

2p2
FNUi**3
magnitude of field-particle velocity

magnitude of test-particle velocity

VHI+xTR

initial location on V scale for tallying particles

initial location on V scale for tallying particles

injection velocity

\/1. 5 Tb/E:) arcsin(Rz)
V2 value of point being tallied
v2 KMARG(J)

%:Vz KMARGYV/(J)

v2KI(9)
v2LI()

;vz KI(J)

S¥2 L)
N}



w (v2)?

W weight factors in Gaussian quadrature integration procedure

X5 abscissa location in Gaussian quadrature integration procedure
X %

X2 9

XHI initial location on 6 scale for tallying particles

XHT initial location on 8 scale for tallying particles

XMIN and XMAX loss cone boundaries on 8

XOoUuT X2 values of a point being tallied
Y v2

Z 1.073 VOVEL /T,

Subscripts:

J index on V or V2

K index on X or X2

L index on V2

M index on X2

[=n

index on Gaussian quadrature terms



C READ Ix OF INITIAL EIELD CISTRIGQUTIIN . . . ._ _.. . e e e

502

— 803 .

204
505

PRINTED N U S.A

FORTRAN PROGRAM
CIM-NSTON KMARGV(11) KMARGX(13),KTIK(L1L,13),KJ(LL),LI0LL)
CIVM _NSION PVSGAV(LLe13)0aXSOAV{LLy13) o TWUP{LLa13)0aTWOR(LLe13),

1 MMIX(11,.13), VSQFV(11)

CIMNSION UELTAV(LL,12),CELTAX(11,13),0PSI(11,13),FTERM(11,13),
1FRICH(11,413),0MIX(11,13)

INTRGER A 8MAX 0 _ .. . _ . o _

CALL SAYIDI(RNT)

RELCI59502) {IKTIK(J9K)»JI=1911)4K=1413)

REAT(5,2503) (KMARGV(J) s J=1211) . .-

REAZ{54504) (KMARSGXIK) yK=1,13)

REAL(52505)KTUT

FCRMAT(1114)

CFCRwAT(OLYIIZY o 0 0 oL e e o e e e e
FCRMAT(131I5)

CFCRYAT(IS)

WRITF(6,625)

WRITE(6 26223} (Ko (KTIK(JaK1aJ=1211),KMARGX(K)sK=1,13)
WRITE(G,£29) (KMARGV(J )y J=1,11)

_WRITELG6L,63DIKTUT. . _. e e e e e e e e e
REAL(S5,500)ECPT,3MAX,RMAX]L ,AMAX, LMAX

IF(LOPT.EQ.DL)GT TIC 270 ... . : .
REAL(D5 950 L) AMINGAMAX g VFI 4 XBI,0ELVHIZDELXHI
WRITE(G,6CCIEUPT s BMAX 2 RMAX Ly AMAX s XMIN,XMAX .
BRATIO=1.0/(SIN{XMIN) } =%

SRITE(6,63 ) VHIa XHLe DELVELLDELXHI L BRAYIO . . . .

CC3ILL=14LMAKX
JR=1,0 e e e . .
S=ALOG(EMAX) /(EQPTRBMAX) %% 2

_ . C ITERATIFN PO LCUP FGR SELF CLCNSISTENT_FIELD DISTRIBUTION

EC25L=1,13

C CALCLLATION OF STEP SIZE AND PROPASJILITY MATRICES . . _.

[C28M=1,11

V2=vHI+{FLOAT(M)-1.5)*DELVHI
X2=XHI+(FLCAT(L)-1.5)*CELXHI

h=Vo*u? R S . -
Cx=C05(X2)

SX=3INIX2). _ . .. .. ... e e

REAL NUMY ¢ NUMZyNIJM3y NUNG ZyNUMS, NUME y NUMT 5 HUMB , qUM9
_MNUM1=0.0 . .. . o . : N o
NUM2Z2=0.0

MNUM23I=0.0 . - R - . S . .
NUM4=0,0

CNUNM 2 =0 O e e e
MNLMS=0.0

NUMI=0.0. . .. L . .

\NUM~=0.0

NLM3=0.0 . . e I

CENCMI=0.0

£ C INTECRATION. OVeEg PCLAR ANCLE_AMD VELGCITY. BY QUADRATURES. . . .

m e 0w
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Fe32u=1.11
IF(LL-1)13,13,14

13 V=(0.200+(FLOAT(I)=1.51%C.200)1%SORT(1.5/EDPT) -

X=0.241661+(FLOAT(K)—~1.5)%0.241661
. GO TO 15 —

14 V=VHI+(FLOAT(J)-1.5) *CELVHI
X=XHI4+(FI CAT(KI—1.5)#F1 XHY

15 Y=V#x2
CK=COS(Xx) o ——
SK=SIN(X)
CXK=CX*CK -
SXK=SX#SK

C INTFGRATINN OVFR AZIMUTHAL ANGIE BY GAUSSTAN QUADRATURES

L FDYS1=TTlxs2/0U1

CRELI=CXK+SXK*#COS(0.18343%3,1416)
SRELI=SX#CK-CX#SK*C0OS{0.18343%#3.14148)
FNUL=SQRT(W+Y-2.0#V2=xV=2CRELL)
FND1=SORT(1.0+Y-2.0%VaSK*CCS(0.1834323.1414))
L1=FNU1l#*»3

T1=v2-V#CREL]

TT1=V2SQRT{1.0-CREL1#%2)

FOX1=V*#SREL 1/111

FOV1=T1l/U1l

FCXS1=1.0/FNUl1-Y#SREL1#%2/U1
FEVI=FNII] #FOV] #FDVS]

FPSI1=(T1+V#CX=%#SRELL1/SX)/FNU1
FMIX1=V%SREL1%FDV]

FTHEL1=V#SREL1»(V2-2. O*CRELI 3. O*VZ*Y*(SRFLI/FNUI)**2)/U1

CREL2=CXK+SXK2LOSIN.52552%3.1414)

SREL2=SX#CK-CX#SK#COS5(0.52553%3,1416)
ENUP=SORT (W+Y=2 0%V x\xCREL D)

FNDZ2=SQRT(1.0+Y-2.0%#VxSK*(C0S (0. 52553*3 1416))
L2=FNU2=»3 . _ .

T2=v2-V#CREL2
TT2=V#SORT(1.0-CREL2%#%2) -
FDX2=V#SREL2/U2

FOV2=T2 /112

FCVS2=TT2#%x2/U2
FOXS2=1.0/FNU2~-Y®SREL2#x2/1)
FFV2=FNU2*FDV2=xFDVS2
FPSI2={T2+VaCX®#SREL2/SX)/FNU?2

FMIX2=V2SREL2%FDV2

FTHFE2=VRSRFI 2% (V2—2. . O%CREL2-3 . OxV2#Y*{ SRFL 2/FNLI

CREL3=CXK+SXK#COS{0.79¢67%3, 1416)
SRELA=SX#CK~CX#SK2#CNS(O_796A7T%3_.1414)
FNU3=SQRT (W+Y=-2, O*VZ*V*CREL3)
FND3=SORT(1.0+4Y-2.0#VaSK2COS{0.79667%3
L3=FNU3#*=%3

TRA=U2-VxCREL3
T1T3=V%SQRT(1.0-CREL3#%2)
FOX23=v=SREL2/U2
FDV3=T3/U3

FOVSA=TTIxx2 /1i3 .

FDXS3=1.0/FNU3~ Y*SRELB!*Z/U3
FFV3=FNIJ3sFRY3xFOVS3

212221 /12

FPSI3=(T3+V=CX#SREL3/SX)/FNU3
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FEMIA3=VeSREL3*FDV3

FTHE3=V=SRFL3x(V2-2. O*C&LL3~3 C*VZ*Y*(SREL3IFNU3)!*?)/U3
CRELG=CXK+SXK*CCS(0.26C29%3.1416) . . oL -
SREL4=SX*#CK-CX*#SK#CUS(Q.5602G6%3.1416)
 FNU+=SGQRT(W+Y—-2.0%Vv2x\xCREL4) I . _
FNDa=SQRT(1.04+Y-2.0%V2SK=C0OS (0. 96029*3 1416))

L4=FNU4=%3 X
T4=y2~ V*CRFL4

1T4=V#SCRT{1.0-CREL4*%2) . - ol

FDX4=V*SREL4/U4%

FOva=T4/U4s o SO

FCVS4=TT4%%2/U4
FDXS4=1.0/FhU4-Y=SREL4%%2/U4 e o .
FFV4=FNU4*xFUV4#FCVS4
FPSI4=(T4+VxCX#SREL4/SX)Y/FNUSA . _ _. .. . I
FNIX4=y#SREL4*FCV4

_ FTHL4=V=*SRFL4#(V2-2. 0%CREL4~3,0%V22Y% (SREL4/FNU4)*#2) /U4 _
CNU=0.36268=FNUL+0.31371%FNU2+0.22238#FNU3+0.10123*FNU4
CND=0,36268+FNDL1+40.31371*FND240.22238*FND3+0,10123%FND4
COV=0.362682FLV1+0.31371#F0V2+40.22238*#FDV3+0.10123#FDV4
GDX=0e356268=FDX1+0.31371#FDX2+0.22238%FDX3+40.10123*FDX4
CDVS=0,36268*FDVS1+0.31371#FCVS2+0.22238#FDVS3+0.10123=+FDVS4
_LDX5=0,36268#F0XS1+40,31371%FLXS2+0.22238#FDXS340.10123%FDXS4
CFV=0.3626R%xFFV]1+0.31371%#FFV2+0.22238*FFV3+0.10123%FFV4

GPS1=0.36266#FEPSI1140.21371#FPSI2+40.22238#FPS31540.10123%#FPS14. -

CMIX=0.36268#FMIX140.31371#FMIXc+0.22238%FMIX340.10123=FMIX4
CTH. =0,36268#FTHE1+0.31371%FTHEZ2+0.22238*FTHE3+0,.10123=FTHE4 _
NUMLI=NUML+FLOAT(KTJIK{J,K))%GNU

NUM3=NUM3+FLCATIKTIK{J,K))*GEX
NUMa=NUMG+FLCAT(KTIK(JsK))*GOVS. . . __ . — .
NUMS=NUMS+FLOCAT(KTJIK(J,K))*GDXS

MNUPMS=NUMGHFLOATIKTIK{JK ) #GFV - e e — .

NUM/I=NUMT+FLCAT(KTJIK{J,K))*GPSI
e NUMI=NUMB+FLCAT{KTIK(J4K))*GMIX S —
NUMS=NUMI+FLCATIKTIK(J,K)}) #GTHE
CENCML=DENCMI+ELCAT{KTIK(J,K))*GND : - ..
32 CCNTINUE
31 CCNTINUE ; - . - L
RMAX= RMAXI*\UML/uENOMI
CELTAV(MaL)=-4,.50%S#NLM2/NUM]L v . ; . -
CELTAX(M,L)=—4.50%SxNLFM3/(V2xNUML)
LELVSQ=2.25%S*NUMG/NUM] . o e _ . -
CELTHA=2.25%S*NUMS/{W=2NUNML)
— LVSCAV(M,L)=SuRT(DELVSC) .
CXSUAVIM, L)=SQRTIDELTHEA)
ETERMIM,L)=—6.T7525sNUVNE/NUM] : —
CPSI{M,L)=2, ZJ*S*NUM7/(W*VZ*SX*SX*NUMI)
CMIA(M, L 1=2,25=5#NUMB/Z(V22NUML ) : - -
FRICH(M,L)=2.25«S*NUMG/ (w*eNUM] )
TWOPIMe L) =0o5%# (LaO+(DELTAVIM,L ) -FTERMIM,L)+0.5%#V2= (DELTHA+SX%%2%_

CICPSI{M,L)))/DVSQAVIM,L))

1CPST(M,L))/DXSQAV (M, L))
_MMAX (M L) =THFIX(RMAX+0.5) . o e e — e e
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R

- JWOR M1 ) =0.5%8({1aQ+(DELTAXA M, L)—FRICH(M L)=DMIX( ML )/V2+0.5%SXxC X2



28 CONTINNF

29 CONTINUE
CUCNR=0.894E~1R3#AMAX ##2s SQRT(EQPT) % DENOM1 /FLOAT(KTOT)
WRITE(6,624)LL

WRITF(A.A32)
WRITE{6,633)(L,{DVSQAV(M,L)sM=1,11),0L=1,13)
WRITF{A.ARG) -
KRITE(6,633) (L, (DXSQAVIM,L ) M=1,11),1L=1,13)
WRITELA.A3RS)
WRITE(6, 633)(L1(THDP(M1L)9M=1911)'L=1113)
KkRITF{A.634)
WRITE(61§33)(L,(THOR(”,L)1M=l)11,9L=1113)
WRITFt6.637)
hR[TE(6’638)(Lv‘MHAX(MvL)tN 1,11),L=1,13)
£o174=1,11
KMARGV(J)=0
KJ{.d)=D
LJ(J)=D
CN17K=1,113
KMARGX({K)=
17 KTIKI[4.K)=
KTOT=0
CVYNSQ=0
SUMNA=0
IRAD=N

SIB=1.0/SQRT(EQPT)
STARY QOF WALKING AMAY DARTICIES. ONME AT A TIME
CO9CA=1,AMAX
CALY RANDIR) - . : —-
C NEWTCN RAPHSON DETERMINATION OF V(R) FROM R{V), BUDKER'S DISTRIBUTION
VN=1.2252SIAXARSINIR=R) '

1 Z=1.073#*V0/SIB
FV=ERF(2)-R
FDV=1.21/{SIB*EXP(Z*Z))
F=FV/FDV
V2=VO-F
IFLABS(F)=0.0113,3,2

2 vo=v2
€0 10 1

3 VINJ=V2
VHT=0.1

C TALLY OF INJECTION MARGINAL DISTRIBUTION IN V
rosai1=1.11

IF(VINJ.LT.VHTIGO TO 5

0
0 —— e

4]
0

™

—& VHT=VHT+0_.15
J=11

- KA A=K A0 BY 41 B
X2=1.57079633
A=1

21 VHH=VHI*TR
" I"Fl VHH=NF1 \IHIQTR

£ LOCATION OF INDICES IN STEP SIZE AND PROBABILITY MATRICES
. M=IFIX({V2-VHH)/DELVHE+2 .0)

IF(M.LT.1)GO TO 18
IFIM_GT.11)1G0 Ta 20
60 TO 19
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18 v=1 _
GC TC 19
20  w=1} L -
19 L=IFIX((X2=-AFI)/CELXHI+2.0)
C ANDCM wALX PROPER - -
Ix=7
Iv=y . R

MMX=MMAX(M,L)
_EC2-MM=1,MNML

CALL RANEC (RNR)
CALL RAND(RNS)

IF("NR.LELTWCP(M,L))GC TC 22

Iy=1vy-1 S —— -
CC 10 23
22 IY=IY+1_ . e - -
23 IF(ANS<LE.TwCR(M,L))IGC TL 24
JIX=1IX-1 e e
CC TG 25
24 IX=[X+1 - ——
25 CCNTINUE

C LOCATING TEST PARTICLE IN VELQCITY SPACE . .. __  _

V2=V2+FLOAT{IY)#DVSQAV(M,L)

CVNSQ=DVNSQ+V2=V2-VINJ=VINJ - -

X2=X2+FLCAT(IX)*DXSQAV(M,L)
IF (X2 LT XMINL.ORX2.GToXMAX)ICO TG. 86  _

vCuT=v2
XCUT=X2
XHT =XHI
. VHT=VHI o
C FIFLE CISTRIBUTICN TALLY
(CBIK=1,13

IF(40UT.LT-XHT)GO TO &2

— 8l  XHT=XHT+DELXHI

k=13
__ 82  CCNITINUE .
C082J=1+11
[IF(YOUT.LTL.VHTIGC TD £4.
83 VHT=VHT+DELVHI
- J=11 -
84 KTUK(I s K)=KTIK(JyK)+1
_  IF(N.GTL5CO0)GC TC 80
8o AN=N+1
cC 10 21 - —
66 SUMNA=SUMNA+FLUOAT(N)

L ACCCUNTING FCR FIELLD ENERCGY

CHANGE  _ -

TR1=1.0-DVNSC*FLOAT(A)/( SUMNA®FLCAT(AMAX))

CIF(IRI-0.0)u7.87488

87 TR=0.001
CC 10 89. . ... -
&4 TR=SQRT(TR1)}
—89_  CEeNTINUE. . __ _
VHT =VHI -
— L _TALLY CF PARTICLES ENTERING
CC74=1,11
L IE(Y2.LTaVFTIGD TG 8
[ VHT=VHT+DELVEI
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8

80
30
91

Jd=11
LJ(J)—LJ(J)+1
cC 10 90 -
IBAC=IBAC+]
FFNTTNHF B
AVM=FLOAT(AMAX~- IdAL)
VSCFVT=0.0

C TALLY FCR MARGINAL DISTRIELT[ON IN v AMD THFFA

160.

C.CAICLYATION OF FTFID ENERGY.

161

(s3]
le]

EC16OK 1 15
KMARGV(J)=KMARGV {JI+KT JK{J,K)
V=VHI+(FLCAT(J)-1.5) #CELVHI

VSCRVIJ)= V*V*FLUAT(KMARGV(J))

- MSGFVT=VSQFVT+VSCFYIL 1) - .. . . - S

CONTINUE
fC163K=1,13
LC162J=1,11
KMARGX [K)=KNARGX (K)+KT 4K (
CONTINUE

LL164K=1,13 Co . . R—
KTCT=KTOT+KHAKGX (K)

MRITELG,400) . .

WRITE(6,401) (KJ(J)sd=1,11)

_WRITE(A.A28) .

hRITE(é.bZB)(K,(KTJK(J K),J 1 11).KMARGX(K),K l 13)

- WRITELH:629) {KMARGY(L),0=1,11) . . . ; A —
WRITE(6,641) (VSUFV(J) +J=1,11),VSQFVT

WRITELLHL,630IKTCY - . . . __. — . - -
WRITE(£E,530)QUCCR

WRITFtA.402) . . P,
WRITE(6,403)(LJ(J)J= 1 11)
WRITE(6H,640)SUMNALAM | - c e e - - S
WRITE(G6, 6CO)EOPT,BMAX RMﬁXl AMAK,XMIN,XMAX

CCNTINUE — - - Coe e .
CC TO 10
_S1np  _ e . e e
FGRVAT(IHL 45x 41HTALLY LF PCINTS IN INJFLTION UI:TRIBUTION
1/730X.3H4=1,5X:3HA=2:5X,3F1=3,8X,3HJ=4,.9X:3HI=9,5X: 3HI=6,5X,3HI=7,_

25X+ 3HI=8+5X33HI=9,4X,4KHJI=10,4X,4HI=11)
FCRVMAT (10X 5HK1(3).,10%X,1118)

FCRMAT{IHL 45X, 41HTALLY (F PCINTS IN LDSS CDNE D[STRIBUTION
1/30Xe3HI=21 .5X3HI52.5%.3k1=3,58X.3H1=4.5X . 3H1=5,5X. 3HI=h5X . 3HI=7,

25X, 31028, 5X, 31 0=9,4% s 4HI=10s 4K 4HI=11)
FORMAT(10X.5HLU(J) s10X,1118)
FORMAT(F6al192(E14aT)y16y13)
FORNATIGI(F1I0D.8))

FORMAT(1IH1,50X, 23HRANDHM WALK CALCULATION/IHO lOX,?HEO'/T =
1 FH.1:5X.AHRNMAX =.1PFE10.3.5X +AHRMAX]1=,1PE10.3,5X:5HAMAX=,15,58X,

Je 1AL 2e A

2 SHXMIN=,0PFLlO.T745Xy5FXMAX=yF10.7)

FCRMATLIHL 55X, 20HITERATION NUMBER Li=.111) -
FCRMAT(IHL,42X,48HTOTAL TALLY OF NUMBER COF PO[NTS [N EACH INTERVAL
1 716X 1HK 15X 3HI=1: 09X 3HI=2 85X 3HY=3,5X;3HI=4,;5X:3HI=5,:5X;3HI=64

2 5X93HI=T,5K33HJ=E,5X,3HI=944X4HI=10,4X,4HI=11,3X,8BHF(THETA))
CFORNMATILIOX.[5,10X,.1218) .

FCRMAT (11X, 4HF (V) ,10X,1118)

63



&30

FCRMAT(1HE 25X 22ETCTAL PCINTS _TALLIED =,110) _ _ | e e e -

530
o3l

FCRI“AT (AX+3UHCCLLISION FREQUENCY PARAMETFER=,E14.7)

FCRMAT(OX 94HVHI=9FLl0a745Xs4HXHI=9F10e745Xs THDELVHI=,F1047,45Xs THDEL

632

1XHI=9F10e 745X 13BMIRRER RATIN=,F1l1l.7)
FCRYAT(1HL 2594 21HSTEP_SIZE LCVSWAV.IM,L) .

1 /1492H Ly TXy3HM=1,8X43HN=2,8Xy 3HM=3,8X, 3pw= 4 3X, 3HM= 5 BX 3HM= 6,
2 BXs3HM=T 9842 3HM=8s8Xy3HN=9,TXy4HM=10,TX24{4M=11)_ e

633
&34

FORMAT(1XsI12+,1Xs11E1Y.2)
FCRMAT(JHL 55X+ 21HSTEP_ SIZE LCXSQAV{M, . -

1 /1As21 LoTXy3HM=1,8X4+3HVM=2,8X,3HM= 3,8X 3HM G,bx 3HM= 5 8X,jHM 6y
2 BXy3HNM=T 36Xy 3FM=8,8X32HV=9, 7X14HM=10,7X,4EM=11) ..

€635

FCRYAT (1HL , 55X+ 21HPROBABILITY TwOP{M,L)

l /1X92H Ly 7Ng3hM=1,8X,3HN=2,8X,3HM=3,8Xs3tiM=4,8X,3HM=5,8X,3HM=6,

636

2 BX43HM=T,8X,3HM=8,8X, IHMN=G, TX14HM=10,7X,4HM=11)
FCRVAT(1HL 455X, 21HPROLABILITY _TWOR(MsL) .
1 /1%a2F LyTas3HM=1,8X43HN=2, 8X, 3HM=3,8X,3HM= 4,0X,3HM 5,8X 3HM= =Gy

2 8X33HM=7,8X33HM=8,8X3HN=G,TX34HM=10,7Xy4HM=11) . : o

637

FCRVAT(IHL SGX121HFRECbEACY NMAX(MvL)

638

640

641

64

2 8X 3HN“7’8Xy3HM—L'8X 3HV= 9 7X 4HN 10 7X,4HM ll)

FCIVAT(1HL » THSUM NA=, 1PE 1447 45X, 3HAM=, 1PEL14.7)

_FCRMAT(11X,6RVVE(V) e 3Xy11F84152XF10e1) o -

END

FCR™AT(1XsI2+4X.11111) _ - S e



G9

6

4
9
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r
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__RANDOM WALK CALCULATION

_EQ*/T = 1.5 BMAX = 3,.162F 02 RMAX1= 3,162E Q1 AMAX=__ 500 XMIN= 1,15024&63 XMAX= 1,.99134613
VkI= 0,2000000 XHI= 1.2149463 DELVHI= 0.2000000 DELXHI= 0.,0647000 MIRROR RATIO= 1.20C0168
ITERATION NUMBER Ll=]
STEP SIZE DVSQAVIM,L)
L y=1 W=2 M=3 M=4 M=5 M=6 M=7 Mz8 Mz9 MalQ M=11
1 0.7536-02 0.721E-02 C.646E-02 0.553E-02 0.459E-02 0.374E-02 0.303E-02 0.245E-02 0.199E-02 0.164E-02 0.136E-02
2 0,753E~02 0,721E-02 0,646E-02 0,553E-02 0,458E=02 0,374E-02 0,302E-02 0,2456-02 = =
3 0,753E-02 0.721E=02"° C.646E-C2 0.552E-02 0,458E~02 0,373E-02 0.302E-02 0.245E-02 0.199E~02 0.164E-02 0.136E-02
4 0,753F=02 0,721E-02 (,646E-02 0,552E-02 0,458E-02 0,373E-02 Q.302E-02 0,245E~02 0,19GE-02 0,164E-02 0,136E~02
S 0.758E-02 0.722E-02 Cl.646E-02 0.552E-02 0.458E~-02 0.373E-02 0.302E-02 0.245E-02 0.199E-02 0.164E-02 0.137E-02
3E= = HE=Q2 0.552E= 24586~02 0.373E~ 302E-02 0.245E~ = = =
7 0.754E-02 0.,722E-02 0.646E-02 0.552E-02 0.458E-02 0.373E-02 0.302E-02 0.245E-02 0.199E-02 0.164E-02 0.137E-02
8 HE= = S =02 0.458E=02 0.373E=0 =02 0,245E=02 0Q,19GE= - =
9 0.753E-02 0.722E~02 (0.646E-02 0.552E~02 0.,458E-02 0,373E-02 0.302E-02 0.2456-02 0.199E-02 0.164E-02 0.137E-02
11 0.,753E-02 0.721E-02 0.646E-02 0.,552E-02 0,458E-02 0.373E-02 0.302E-02 0,245E-02 0.199€E~02 0.164E-02 0,1365-02
13 0.7545E~02 0.,721E-02 0.646E-02 0.553E~02 O0.459E-02 0.374E-02 0.303E-02 0.245E-02 0.199E-02 0.,164E-02 0.136E-02
STEP SIZE DXSPRAVIM.IL)
L M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=1C M=11
= = = = = 81E~02 0.369F-02 0.290F=02 = =
2 0.769E-01 0.245E-01 0.138E-01 0.913E-02 0N.648E-02 0.481E-02 0.368E-02 0.290E~02 0.233E-02 0.191£-02 0.159E-02
= = 38E~ = - 8OE~-02 0.368F-02 0.290F=02 0.233E=-02 Q0 = -
4 0.759E-01 0.244E-01 G.138E-Cl 0.912E-02 0.647E-02 0.480E-02 0.368BE-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02
e = - -
6 0.759E-01 0.244£-01 0.138E-01 0.912E-02 0.647E-02 0.480E-02 0.36BE-02 0.290E-02 0.233E-02 0.191E-02 0.159€E-02
8 0.759€-01 0.244E-01 C.138E-01 0.,912E-02 0.647E-02 0.480E-02 0.368E-02 0.290E-02 0.233E-02 0.191€E-02 0.159€E-02
9 0 3£-0 4E= = 912E-02 0,647k~ el bl = ol bl
10 0.759€-01 (0.,244E-01 C.138E-01 0.912E-02 0.647E~02 0.480E-02 0.368E-02 0,290E-02 0.233E-02 0.,191E-02 0.159E-02
1L Q.759E~01 Q,245E-01 _C,138E-Cl 0,912E-02 0,647E-02 (0.480E-02 0,368E-02 0,290F-02 0,232E-02 0,191FE-02 0,159E-02
12 0.760E-01 9.245E-01 C.138FE-01 0.913F-02 0.648E~-02 O0.481E-02 0.368E-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02
OF=- 0 - - Q - - - - = S - ~
PROBABILITY TWOP{M,L)
L V=) M=2 M=3 M=4 M=5 M=6 M=T M=8 M=9 M=1C M=11
1 0.538C 00 0N,511E 00 C.5C5E Q0 0.503E 00 0.501E 00 0.500E 00 O0.500E 00 0.499E 00 0.49GE 00 0.499E 00 0.499E 00
i K ) 00 0.499F 00 0.499F 00
3 0.532E 00 O0.511E 00 C.50%E 00 0.503E 00 0.501F 00 O0.501E OG 0.500F 00 0.499E 00 0.499E 00 0.49SE 00 0.499E 00
4 Q.537F 00 Q,.511€ Q00 CL,5CSE QO Q.503F Q0 0.501£ 00 0.501F€ 00 0.500F 00 0.699F 00 0.49GF 00 0.499F 00 0.499F Q0
5 0.537F 00 0.511E 00 C.5C5C 00 0.503E 00 0.501E 00 0.501E 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00
E ) 00 0.499F Q0
7 0.537€ 00 0.511E 00 C.5CS5E CO 0.503E 00 O0.5G1E 00 O0.501E 00 O0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00
£ 3 > 00 0.499F 00
9 0.537F 00 0.511E 00 C.S5C5E 00 0.503E 00 0.501E 00 0.501E 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00
; ¢ . Q0 0.5GLE Q0 0,501E 00 0.500F 0Q 0.499F Q0 0.499F Q0 0.499F 00 0.499F 00
il 0.53tE 00 0.511E 00 C.5C5E CO O0.503E 00 0.501E 00 0.501E 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00
12 0.53PF 00 0,%11E 00 C.5C5E €O  0.503F 00 0.,501F 00 0.501F 00 0.500F 00 0.499F 00 0,4399F Q0 0.499F 00 0.499F 00
13 0.534€ 00 O0.511E 00 C.505E 00 0.503f£ 00 0.5ulE 00 0.500E 60 0.500E 00 0.499E 00 0.49SE 00 0.499E 00 0.499€ 00
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PRODABILITY THWIR(M,))

oL
1
[}

L v=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 ~¥=9 M=1C M=11

1 0.513FE Q0 N.506F 00  C,5C2E 00 0.501c Q0 __0.%01F 00 _0.501¢€ 00  0.500F 00 (0.500€ 00 0.50CE 00 0L.50CE 00 0.500F Q0
2 0.503F 00 U,5C3E 00 C.5C2F €O 0.501E 00 0.501E 00 0.500€ 00 0.500F 00 0.500E 00 0.5006E 00 OQ.E5CCE 00 0.500€ 00
3 0.507E 00 _0.503FE 00 C.5C1E 00 0.S01F 00 0.301F €0 0,500 00 _0.500E 00 0.500E 00 0,500 00 0.60CE 00 0.500£ 00 %
4 0.50-E 00 N.3028 00 C.5CLE 00 0.501E 00 0.500E 00 0.500E OU 0.500F 00 0.5006 00 0.500E 00 0.S00E 00 0.500€E 00
5 0.504E 00 _Q.501¢ 00  C.5C1E 00 Q.500F 00 0,500E Q0  0.500{ 00 0.500F 00 (0.500E 00 0.500F 00 0.S0CE 00 0,500F 00
6 C.5028 00 0,501E 00 C.5C0F CO 0.500E 00 0.500F 00 0.500E 00 0,500 00 0.500E 00 0.500E 00 0.f£0CE 00 0.500F 00
7 0.500F 00  0.500F 00 C.SCOF 60  0.500F 00 Q.500F 00 _0,500F 00  0.500F 00 0,500 00 0L,500F 00 0.°00FE. 00 0.500FE 00
8 0.494F 00 0.499& 00 C.5C0E 00 0.500€ 00 0.500t 00 0.500E 00 0.S500€ 20 0.500E 00 0.500E 00 0.50CE 00 0.500E 00
9 0.49AF 00 0,499F G0 C,4G69F CO 0,.500E 00 0.500E-00_ Q.500F 00U _Q.500F 00 _0.500€ 00 _0.50CE 00 0,.SQ0E 00 __0,500¢ 00
10 0.49.F 0U 0.498E 00 C.4S9E CO 0.499E 00 0.500E 00 0.500£ 00 0.500E 00 0.500E 00 0.500E 00 «S0CE 00 0.500E 00

Ll 0.493° 00 _0.497F Q0 C.4S9F OG0 0.499F 00 0.499F 00 _0.500F 00 _0,.500F 00

12 0.491F 0N 044976 00 C.4458FE 00 0.499E 00 0.499E 00 0.500€ 00 0.S500E 00 0.500€E 00 0.500E 00

«S00E 00 0.500E 00

13 C.4d33F OO0 N.496£ Q0 C.4G98E 00 N.499E€ 00 0.499E 00 0,499 00 0.500F 00 Q,500E 00 _0,500E Q0 O.E0CE 00 0,.500F 00
FREQUENCY MMAX (M, L)
L M=l M=2 M=3 Mz4 M=5 M=6_ M=a7 M=8 M=Q Mz]C M=11
1 22 23 25 217 30 33 37 41 45 49 54
2 22 23 25 21 30 33 a7 —41 45 S0 54
3 22 23 25 27 30 33 37 41 45 50 54
4 22 23 25 27 3Q 33 37 4} 45 50 54
5 22 23 25 21 30 33 37 41 45 S0 54
A 22 23 25 21 a0 33 ____131 _ -4} 45 50 54
7 22 23 25 27 30 33 37 41 45 50 54
- 22 23 25 27 30 33 az 41 45. 50 54
N 9 22 23 25 21 30 33 37 41 45 50 Sk
10 22 23 25 27 30 a3 az — 4] 45 50 54
11 22 23 25 27 30 33 37 41 45 50 54
12 22 23 .25 21 30 33 37.. 41 45 50 S4
13 22 23 25 27 30 33 37 41 45 49 54
TALLY- OF POINTS [N INJECTIQON DISTRIBUTION
J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 J=11
KAL) 12 92 93 A5 40 46 a0 19 15 2 6.
TOTAL TALLY OF NUMBER OF POINTS IN FACH INTERVAL
K 1=1 }=2 1=3 1=4 1=5 I=6 i=7 1=8 }=9 1=10 1=11 E(THETA)
1 L7 61 143 184 224 191 265 118 7 0 7 1247
2 G4 11l 288 423 8245 LY 102 274 €3 4 19 3104
3 25 200 434 745 889 989 782 428 16 104 255 4927
4 28 251 496 1055 1125 1504 172 431 121 212 404 6459
5 £8 269 650 1204 1215 1900 1462 486 182 323 589 8368
b 42 297 828 l419 1541 2337 1206 807 280 369 4C9 10055
7 127 365 1041 1447 1960 2352 1859 1249 493 650 230 11773
8 46 326 A37 1523 1857 1259 1380 1109 5£8 493 141 10039
9 Sl 324 635 1234 1505 1532 1044 704 639 328 1e2 8198
10 33 . 224 492 Q11 1187 1416 686 529 592 232 135 6462
& 11 21 168 313 667 866 1224 610 427 259 299 s9 4993
3] 12 59 115 241 388 595 850 482 246 1£3 200 36. 3401
o 13 12 68 133 177 252 387 275 104 99 112 £5 1684
s —E{Y) 643 2179 6537 11327 13761 17002 12025 6912 3567 3386 2671
: VVELV) 6.4 250.1 1634.2 5574.7 L1l46.4 20572.4 20322.2 15552.0 10395.3 12223.5 117179.1 109456.5
9
§ ICIAL POEINTS TALLIED = 80690
: CCLLISION FREQUENCY PARAMETER= 0.1454641E~12
TALLY OF POINTS IN 10SS CONE DISTRIBUTION
J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 J=11
LJA(J) 128 121 17 69 43 33 13 9 4 1 1
SUM NA= 7.61880C0E 04 AMz 4,9899999E 02
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APPENDIX F
ANALYTICAL SOLUTION FOR CASE OF SHORT WALKS

Consider the walks so short that the Fokker-Planck coefficients are constant over
the distance traveled. Assume that the walk terminates when a particle first reaches
a prescribed @ distance from its initial location. Effects of V are thus of second
order and can be neglected. For a spherical field distribution, both equations (4)
and (5) in combination with a source term as in equation (6) reduce to

1 ((A9)2> 3 (sin 6 ﬂ) = -s sin 6 (F1)
2 26 a6,

If the initial test-particle location is at 9 =~ 7/2, then sind~1 and &= 506[9 - (n/2)]
reducing equation (F1) to

2
L L s (9 - l’) (F2)
2 262 2

This model may simulate the end loss problem for mirror ratios very close to 1. 0.
Injection would be normal to the B field at a constant rate $ o The boundary conditions
are

£(0,) = f(m - 0, =0 (F3)

Using (F1) in (F2) and integrating both sides of the equation gives

of of o

i Ak )

where H is the Heaviside unit function. Integrating a second time and using equation
(F3) yields
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f(9)—gf— (9-9c)=0 when OCSGSE
o), 2
6—9c
(F4)
2s \ -
= - 0 (_E) when—ses(n_ec)
2
(b)) 2
At 0=17 - Gc
of __ %o (F5)
20|, 2
0=6, ((80)%)
Using equation (F5) in (F4) gives
s‘o T
£(6) = 6-6) when 9 =<0 =<7
2 ¢ ¢ 2
((a6)%)
. (F6)
So 7
=—— (m-06-8) when — =0 =<7=<9§
2 c 9 c
((A6))
Loss rate must equal injection rate for steady state so
1T-9c 1r—9c
= $(0)sin 6 do = & 5( -E>sined9=s‘
b 8,
The number density, distribution function relation must be
m-0, . /2
250
n, = f(9)sin dg = —— (0 - Bc)sin 6 do
((a0)%
9 c
2s'0
=—2 _(1-sing) (F7)
(4%
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Using equation (F6) gives

2
_ m{20?)
2(1 - sin Bc)
For small I .4,
2
T _ g 2
'é c
sinec=1—-—-— (F8)
2
to second order so that the loss rate becomes
. ((a0)D)
n= (F9)
2

Evaluating ((AB)Z) for a spherical Maxwellian field distribution (eq. (11¢)) and sub-

stituting into equation (F9) yields for v=1v o

2 4 2 ' Y 7
_ 2 n2 (z)%T _E'/T E E
n<l’ - 90) -_b e <~?.> In 8 y 1 e 0/ b, _o__ 1 erf4/—-2
2 t \ E 3/2 T ' T.
Vm 47E s \®o/ (2kT,) \T b , E, b
|
(F10)

If the particles are, for example, injected at 10 times the average field energy then

1 2 _30
-émvo—-z—ka

or
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and for deuterons, for example,

2
3/2(w

nlz)logﬁ

= 0.773x10" 19 (F11)

This result is used in figure 6.

It is interesting to compare equation (F9) with equation (33) of reference 8. The
result of reference 8, derived strictly from a random walk, is for only one absorbing
wall. The loss rate predicted by equation (F9) (for two absorbing walls) is just twice
that of reference 7.

To determine the marginal distribution in 4 for use on figure 7(a) substitute equa-
tions (F7) and (F8) into (F6). This yields

N
£,(6) 0 -6
Fy(6) = A c when 6, =96 =TI
n, 2 2
(7
5 c
2
e (17)
T_o
- 1+2 Whenﬂses(n—ec)
T_o T_» 2
c c
2 2 J
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APPENDIX G

SELECTION OF RANDOM NUMBERS FROM THE NONUNIFORM
INJECTION DISTRIBUTION OF REFERENCE 5

The simulation procedure of sampling from a nonuniform distribution when the com-
puter library contains only a uniformly distributed set of random numbers is quite com-
mon (refs. 9, 21, and pp. 252-264 of ref. 15). The relation between a uniformly dis-
tributed random number R and an arbitrarily distributed random number v is

R=fRdr=fY £(v)dv

0 0

where it is necessary only that the second integral be a monotone increasing function of
4. This says that the cumulative distribution function R of the probability density £(v)
is uniformly distributed in ¥. If f(v) is integrable, R(¥) can be found. But to find
¥ (R) explicitly in the case of interest herein required a root finding method such as, for
example, the Newton-Raphson method (ref. 22).

The injection distribution of reference 5 is

v

2
((A9)2> e-mv /2ka .2

dv

R#)= 2 — e

2
-mv®/2kT
((a0)%e b2 4

where <(Ae)2> is given by equation (11c). Letting x = \/m/2ka v results in a new
expression for R(¥):
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m/2ka v
2 2
—1--Lex +< --—)erfx e X dx
0 % N 2x
RW) = = — — (G1)
2 2
i[—l e X 4 (x - -l—x)erf x] e ¥ &
2LV7 2

This was integrated by the method of Gaussian quadratures. The curve {it

R(¥) = erf [1.0734/— =y
2KT,

is a good approximation to the result. This is shown on figure 12 where V = )"/vo is

Lo— -

RV) /

A/ O RWI=-erf(L3I5V)
Equation (G1)
— —— V =arcsin (R9

I | I I I I I I
0 .2 .4 .6 .8 1.0 1.2 1.4 16
Velocity ratio, V

Figure 12. - Random number distribution to fit injection distribution of
reference 5.
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used as the abscissa and Vm/2ka v, = \/E;/Tb was set equal to' V3/2 to make ref-
erence velocity v, equal to the mean field velocity. '
For an initial approximation V(R) for use in the Newton-Raphson method, the curve

V = arcsin R2
was used.

Results of this procedure to generate the injection distribution is shown to be satis-
factory in figure 8(c).
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